+234 8146561114 (MTN) or
+2347015391124 (AIRTEL)
DESIGN AND CONSTRUCTION OF SOLAR DRYER

Abstract

This work is titled design and construction of a solar dryer. Solar dryers are devices that use solar energy to dry substances, especially food

The solar drying system utilizes solar energy to heat up air and to dry any food substance loaded, which is not only beneficial in that it reduces wastage of agricultural produce and helps in preservation of agricultural produce, but it also makes transportation of such dried produce easy and promotes the health and welfare of the people. This paper presents the design and construction of a domestic passive solar food dryer. The dryer is composed of solar collector (air heater) and a solar drying chamber containing rack of four cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channeled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). The design was based on the geographical location which is Abeokuta and meteorological data were obtained for proper design specification. Locally available materials were used for the construction, chiefly comprising of wood (gmelina), polyurethane glass, mild steel metal sheet and net cloth for the trays.

 

CHAPTER ONE
1.0                                                        INTRODUCTION
Drying is an excellent way to preserve food and solar food dryers are appropriate food preservation technology for sustainable development. Drying was probably the first ever food preserving method used by man, even before cooking. It involves the removal of moisture from agricultural produce so as to provide a product that can be safely stored for longer period of time.
“Sun drying” is the earliest method of drying farm produce ever known to man and it involves simply laying the agricultural products in the sun on mats, roofs or drying floors. This has several disadvantages since the farm produce are laid in the open sky and there is greater risk of spoilage due to adverse climatic conditions like rain, wind, moist and dust, loss of produce to birds, insects and rodents (pests); totally dependent on good weather and very slow drying rate with danger of mould growth thereby causing deterioration and decomposition of the produce. The process also requires large area of land takes time and highly labour intensive.
With cultural and industrial development, artificial mechanical drying came into practice, but this process is highly energy intensive and expensive which ultimately increases product cost. Recently, efforts to improve “sun drying” have led to “solar drying”.
In solar drying, solar dryers are specialized devices that control the drying process and protect agricultural produce from damage by insect pests, dust and rain. In comparison to natural “sun drying”, solar dryers generate higher temperatures, lower relative humidity, lower product moisture content and reduced spoilage during the drying process. In addition, it takes up less space, takes less time and relatively inexpensive compared to artificial mechanical drying method. Thus, solar drying is a better alternative solution to all the drawbacks of natural drying and artificial mechanical drying.
The solar dryer can be seen as one of the solutions to the world’s food and energy crises. With drying, most agricultural produce can be preserved and this can be achieved more efficiently through the use of solar dryers.

 

1.1                                               OBJECTIVE OF THE STUDY
The objective of this work is to design a device that can use to dry and preserve food using solar energy. Thus, the solar dryer is one of the many ways of making use of solar energy efficiently in meeting man’s demand for energy and food supply.
1.2                                           SIGNIFICANCE OF THE STUDY
The basic function of a solar dryer is to heat air to a constant temperature with solar energy, which facilitates extraction of humidity from crops inside a drying chamber. Ventilation is enabled at a constant rate through defined air inlets and outlets, small solar ventilators or temperature difference, either due to exposition or vertical height. In direct sun driers the food is put in boxes with a transparent lid. Additionally, the temperature in the drier is raised due to the greenhouse effect and the air exchange is regulated by vents. The food is not exposed to direct sunlight in indirect sun driers as the fresh air is heated separately from the food chamber. This method is preferable for drying foods which loose nutritional value when exposed to direct sunlight. Hybrid driers combine solar energy with a fossil fuel or biomass fuel.
A first step when considering solar drying is to compare the different drying options available. Solar drying will only be successful, when it shows tangible benefits in comparison to existing drying methods. In comparison to the traditional way of drying outside in an open field, solar dryers prevent contamination of produce by dust, insects, etc., thereby ensuring quality. They allow small-scale farmers to transform their harvest into storable and tradable goods, which they can sell off-season at higher prices. The constant temperature and ventilation allows a consistent drying process which results in better product quality and higher prices. However, the investments costs of solar dryers vary highly depending on the size of the solar dryer, locally available materials and environmental conditions, such as slope and exposition of the side, rainy seasons

1.3                                          APPLICATION OF THE PROJECT
Solar dryers are a very useful device for:

  1.  Agricultural crop drying.
  2.  Food processing industries for dehydration of fruits and vegetables.
  3.  Fish and meat drying.
  4. Dairy industries for production of milk powder.
  5. Seasoning of wood and timber.
  6. Textile industries for drying of textile materials, etc.

 


This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract visible for everyone.

All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.

To "DOWNLOAD" the complete material on this particular topic above click "HERE"

To view other related topics click HERE

For more information call us on: +234 8146561114 (MTN) or+2347015391124 (AIRTEL)


To "SUMMIT" new topic(s) OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research for your new topic? if yes, click "HERE"

IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.

Order Full Material(s)
Download Full Material(s)
Bank Accounts

contact us

Hire a writer

order/learn construction


view other related topics

frequently asked questions(FAQ)