+234 8146561114 (MTN) or
+2347015391124 (AIRTEL)

 

PROJECT


BY
 
-------------------
EE/2017/167
 
SUBMITTED TO


DEPARTMENT OF ELECTRICAL ELECTRONIC ENGINEERING FACULTY OF ENGINEERING CARITAS UNIVERSITY, AMORJI-NIKE, ENUGU.

 
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF ENGINEERING (B.ENG)

 



APPROVAL PAGE

This project has been read and approved by the undersigned as with the requirement at the department of Electrical Electronic Engineering of Caritas University Amorji Nike Enugu for the award of  Bachelor of Engineering (B.Eng.) in Electrical Electronic Engineering.

----------------------------                                             --------------------------
    Engr. Ejimorfor                                                                   Date
(Project supervisor)                                            
 
---------------------------                                               --------------------------
      
    Engr. Ejimofor                                                                      Date
(Head of Department)
 
 
------------------------------                                            ------------------------
      
External Supervisor                                                             Date                                                                    

 


 

DECLARATION

I declare that this project material is an original work done by me under the supervision of Engr. Ejimorfor, department of electrical electronic engineering faculty of engineering caritas university, amorji-nike, enugu

 


DEDICATION


This project is dedicated to Almighty God and to my parents Engr. & Mrs. Chukwu A. Orioha and to my beloved brothers and sisters whose ever loving kindness and support has seen me through my years of studies.


ACKNOWLEDGEMENT


I wish to express my immense gratitude to God Almighty for his mercy, guidance and protection towards me for seeing me through the rigors of this work. I am greatly indebted to my supervisor Engr. Ejimofor for his kind gesture and whose critics lead to the achievement of this work. I also will remain grateful to the tremendous contribution of my lecturers Engr. Ojobor (the Dean of Engineering Faculty), Engr. Ejimofor (Head of Electrical Electronic Engineering Department), Engr. Mbah, Engr. Ochi, and all the staff of Electrical Electronic Engineering both academic and non academic staff for their intellectual upbringing. My special appreciation goes to my loving parents Engr. & Mrs. Chukwu A. Orioha, my grandparent, my uncles and aunties, my brothers and sisters whose moral and financial support cannot be over emphasized. Also my sincere gratitude and special regards to my friends too many to mention whose encouragement also lead to the success of this work.


 

ABSTRACT

CHAPTER ONE
1.1                                                        INTRODUCTION
A hydraulic press is a device using a hydraulic cylinder to generate a compressive force. It uses the hydraulic equivalent of a mechanical lever, and was also known as a Bramah press after the inventor, Joseph Bramah, of England. He invented and was issued a patent on this press in 1795. As Bramah (who is also known for his development of the flush toilet) installed toilets, he studied the existing literature on the motion of fluids and put this knowledge into the development of the press.
The hydraulic press depends on Pascal's principle-the pressure throughout a closed system is constant. One part of the system is a piston acting as a pump, with a modest mechanical force acting on a small cross-sectional area; the other part is a piston with a larger area which generates a correspondingly large mechanical force. Only small-diameter tubing (which more easily resists pressure) is needed if the pump is separated from the press cylinder.
Pascal's law: Pressure on a confined fluid is transmitted undiminished and acts with equal force on equal areas and at 90 degrees to the container wall.' A small effort force acts on a small piston. This creates a pressure which is transferred through the hydraulic fluid to large a large piston''.
This machine is powered by high-pressure fluid and used for working of materials by pressure. The first hydraulic presses were used at the end of the 18th century and the beginning of the 19th for such purposes as baling hay, pressing grapes, and squeezing butter. By the middle of the 19th century hydraulic presses were being widely used in metalworking for forging of billets, sheet metal stamping, die stamping, bending and straightening, volumetric stamping, extrusion of piping and structural shapes, packaging and briquetting of waste products, compressing of powdered materials, metal sheathing of cables, and so on. Hydraulic presses have also found use in making plastic and rubber articles, wood veneers, plywood, textolite, and the like. They are also employed in syntheses of new materials (such as artificial diamonds).
The operation of the hydraulic press is based on Pascal’s law. Its force is developed by a piston of a working cylinder to which fluid (water or oil) under high pressure is admitted. The piston in turn is connected to the working tool. A hydraulic press may be driven by a pump or by a pump-accumulator station with steam, air, hydraulic, or electromechanical actuation. The working cylinder may be either vertical or horizontal. The pressure of the working fluid is usually 20-32 meganewtons/m2 (200-203 kilograms-force/ cm2), but in special cases (such as diamond syntheses) it may reach pressures of 450 meganewtons/m2 (4,500 kilograms-force/cm2). The cost of metalworking on the hydraulic press is lower than the cost of hammering and the efficiency is higher. The hydraulic press does not require a heavy foundation and does not cause great vibrations and noise such as is inevitable during hammer operation.


1.2                                             OBJECTIVE OF THE PROJECT
The objective of this work is to fabricate a machine that is powered by high-pressure fluid and used for working of materials by pressure

1.3                                     SIGNIFICANCE OF THE PROJECT

A hydraulic press is used for almost all industrial purposes. But basically it is used for transforming metallic objects into sheets of metal. In other industries, it is used for the thinning of glass, making powders in case of the cosmetic industry and for forming the tablets for medical use. The other common uses of the hydraulic presses are as follows:

  • For crushing cars. A hydraulic press is the heart of any car crushing system. In this process, a hydraulic motor applies a large pressure on the fluids into the cylinders. The fluid pressure makes the plates rise and with a large force, the plate is driven on the car thereby crushing it.
  • Fat-free cocoa powder. While processing the cocoa beans, a liquid known as chocolate liquor is derived. For making fat-free cocoa powder, this liquid is squeezed out in a hydraulic press. After this stage, this liquid is processed further to make a powder. The powder thus derived is cocoa powder, which is fat-free.
  • For sword making. In the process of making swords, a hydraulic press is used to give a flat shape to the raw steel.

1.4                                          APPLICATION OF THE PROJECT

A hydraulic press is very versatile and can be used in all kinds of applications viz:

Compacting Food and Other Consumables

Compressed food products are packed using hydraulic presses. Many popular meat and cheese products would not be possible without the use of a hydraulic press. Powdered make up and pills are often compressed using specialized hydraulic presses.

Making Appliances

Hydraulic presses are frequently used when manufacturing appliances. A hydraulic press might be used to create or assemble the electrical parts of a refrigerator, or stamp a panel. Microwaves, dishwashers, and laundry machines all require hydraulic presses for shaping panels and many of them require hydraulic presses for other uses as well.

Manufacturing Electrical Parts

A hydraulic press is often used in the manufacturing of electrical equipment used in major electrical installations. Housings and switches found in switching stations and elsewhere are assembled using a hydraulic press. The thermostats that help keep our houses, and businesses at the correct temperature are often manufactured using a pressing process.

Making Ceramics

Hydraulic presses are used to compress the particulate matter that makes up ceramics into their ceramic form. Ceramics see all sorts of uses; from potent magnets to most forms of industrial manufactured clay product ceramics help make the modern world possible. Ceramics are also used in body armor to keep soldiers and other people in dangerous situations safe. Some super high tech fields like semiconductors really entirely on ceramics.

Manufacturing Car Parts

Many of the parts of automobiles are shaped using hydraulic presses. From clutches, to gear and bearing assemblies, a hydraulic press helps make even the most vital car parts possible. Simpler products like windshield wiper blades are also manufactured using hydraulic presses. Hydraulic presses even see use in more precise manufacturing applications like fuel injection sensors. Hydraulic presses optimize many sorts of forming and stamping operations.

Building Aircraft

Similarly to with cars, the same or analogous parts of aircraft are built using hydraulic presses. In addition to things like windshield wiper blades and gear assemblies even the airplane body panels and wings are built using hydraulic presses.

Military Application

Hydraulic presses are used when loading shells and other ammunition related tasks. Hydraulic shop presses are often located aboard navy ships, or even outside the military in the merchant marines, in case emergency repairs are needed. Every single air force base probably has a hydraulic shop press located somewhere. There are numerous other military applications from making vehicle tires and tracks to fuel cell compression.


1.5                                               BENEFIT OF THE PROJECT
1) Hydraulic presses have the ability to compress any material to the maximum unlike their mechanical equals.
2) Hydraulic presses occupy only half the space taken up by mechanical machines because they are able to constrict large pressure in a small diameter cylinder.
3) They can deliver full exerted force anywhere in the stroke’s range thereby adding to its innate flexibility.
4) Hydraulic presses are easy to design according to the customers’ individual requirements.
5) You can modify tonnage or even maximize the time cycle for every job by using a hydraulic press enabling the user to be more productive through elimination of changing pressure, excessive ram pressure and maintaining/varying ram speeds via the cycle. If you modify the options for every job, you can maximize the cycle time.
6) Hydraulic presses can be built to any sophistication level; be it a simple exclusive cell press or a multi-purpose system that’s fully integrated, hydraulics are cost effective and easily altered for whichever task at hand.
7) Hydraulic presses’ components are readily available in the market at great affordable prices for both long term and up-front operations.
8) The hydraulic force principles enable creative engineering which include traditional multi-action, side-acting, up-acting and down-acting operations. Power systems can be positioned remote, below or above the force and press actuators.
9) The hydraulic relief valve incorporation into the hydraulic system offer in-built overload protection. No press-force can supersede the pressure it is enabled to build therefore restraining the maximum pressure obtainable controls extreme force.
10) The hydraulic presses have limitless control options ranging from basic relays to more complex PC or PLC control systems. In order to facilitate ease of work, operator interfaces can be included by storing specific job parameters or every dye. Hydraulic presses can be controlled for exact position and pressure including speed control, dynamic adjustments, present time performance variances and pressure holding. Speed and ram force can be controlled in any way with various precision levels.
11) Hydraulics enables high pressure generation over a small surface area. This potential minimizes the general structure needed to support the actuators force.
12) The control of the hydraulic press over the motions and forces permits the press to offer greater general quality of a manufactured part than several other kinds of presses.


1.6                                 LIMITATIONS OF PROJECT
This work is limited to designing a hydraulic press with:
i.  175mm cylinder stroke
ii. 0-920mm adjustable bed height
iii. 510 mm table widths
iv. Movable head for off centre pressing


1.7                                PROBLEMS OF THE PROJECT
This machine is designed for heavy compression of a variety of objects along with cutting and punching of metal components in specific industrial assembly processes and applications. Modern press machines offer exceptional performance and reliability, which explains their widespread appeal and application in manufacturing. Like all tools, the hydraulic press can become damaged over time through heavy usage. Here are common problems associated with hydraulic press

  • Oil leakage: Oil leaks are the most reported problem with hydraulic presses. If your press is working well, you should not have an oil leak.  Oil leaks can show up on hydraulic lines, hose end fittings and around the ram.  
  •  Overheating: Another common problem with hydraulic presses is overheating. For optimal performance, your hydraulic press machine should not be running higher than 150° F. Higher temperatures will damage seal compounds and degrade the oil.
  • Slow Pressure Build Up: When working at peak performance, your hydraulic pump should reach its required pressure in about one second.  Pressure buildups of over two seconds may signal a problem with the pump.
  • Abnormal noise is produced during operation.
  • High fluid temperature.
  • Slow in operation.
  •  Cavitational wear generate.
  •  At high speed, tiles is not produced properly.

1.8                                     DEFINITION OF TERMS

  • Bed - The main foundation and supporting structure upon which the operating parts of the machine are mounted and guided.
  • Bolster: A Bolster plate is attached to the top surface of the press bed.
  • Cylinder - Cylinder assembly consists of a cylinder, piston, ram, packing, and seals. Piston diameter and oil pressure determine the force (tonnage) that a given press can deliver.
  • Daylight - The clearance from the bolster bottom (when fully retracted) to press bed.
  • Frame - The main structure of the press containing the cylinder and the working surfaces.
  • Stroke - Stroke length can be set for any distance within the stroke limits of the cylinder. Adjustments include: top of stroke, pre-slowdown point, and bottom of stroke.
  • Throat Clearance - The distance from the vertical centerline of the ram to the frame member behind the bed. This distance determines the largest diameter piece that can be positioned with the part centerline under the center of the ram.
  • Moving Plate - A plate which is mounted on the cylinder Ram and moves when the cylinder extended.
  • Dual Push Buttons - A most common method of actuating hydraulic presses considering the safety of the operator.
  • Pendant: Electrical control device with Push Buttons Mounted
  • Work Height - The distance from the floor to the top of the bed.

 



This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.

All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.

To "DOWNLOAD" the complete material on this particular topic above click "HERE"

Do you want our Bank Accounts? please click HERE

To view other related topics click HERE

To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research for your new topic? if yes, click "HERE"

Do you have any question concerning our post/services? click HERE for answers to your questions

You can also visit our facebook Page at fb.me/hyclas to view more our related construction (or design) pics


For more information contact us through Any of the following means:

Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]

Email address :engr4project@gmail.com

Watsapp No :+2348146561114

To View Our Design Pix: You can also visit our facebook Page at fb.me/hyclas for our design photos/pics.



IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.