+234 8146561114 (MTN) or
+2347015391124 (AIRTEL)
MICROCONTROLLERS AND MICROPROCESSORS

ABSTRACT

The introduction of “Microprocessor” has changed the way in which we view, analyze and control the world surrounding us over the past two decades. Microprocessor is considered a product of combined developments in the fields of computer architecture and Integrated Circuit (IC) fabrication. It has made the concept of personal computing very feasible.
The Microcontroller is often considered as a byproduct in the development of microprocessor. The fabrication process and programming technique which are responsible in the development of microprocessors has also lead to the development of microcontrollers. Until a decade ago, the microcontrollers are less popular in both the technical community and general public even though most of the consumer electronics like televisions, video games, video cassette recorders, telephones, elevators etc. comprise of them. This work discuses differences between Microcontroller and microprocessors.

 

CHAPTER ONE
1.1                                                        INTRODUCTION
The term microprocessor and microcontroller have always been confused with each other. Both of them have been designed for real time application. They share many common features and at the same time they have significant differences. Both the IC’s i.e., the microprocessor and microcontroller cannot be distinguished by looking at them.  They are available in different version starting from 6 pin to as high as 80 to 100 pins or even higher depending on the features.
microcontroller is refer as a small computer (SoC) on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals. Program memory in the form of Ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a typically small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.
Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, implantable medical devices, remote controls, office machines, appliances, power tools, toys and other embedded systems. By reducing the size and cost compared to a design that uses a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to digitally control even more devices and processes. Mixed signal microcontrollers are common, integrating analog components needed to control non-digital electronic systems.
Some microcontrollers may use four-bit words and operate at frequencies as low as 4 kHz, for low power consumption (single-digit milliwatts or microwatts). They will generally have the ability to retain functionality while waiting for an event such as a button press or other interrupt; power consumption while sleeping (CPU clock and most peripherals off) may be just nanowatts, making many of them well suited for long lasting battery applications. Other microcontrollers may serve performance-critical roles, where they may need to act more like a digital signal processor (DSP), with higher clock speeds and power consumption.
Microprocessor is a computer processor which incorporates the functions of a computer's central processing unit (CPU) on a single integrated circuit (IC), or at most a few integrated circuits. The microprocessor is a multipurpose, clock driven, register based, programmable electronic device which accepts digital or binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic. Microprocessors operate on numbers and symbols represented in the binary numeral system.
The integration of a whole CPU onto a single chip or on a few chips greatly reduced the cost of processing power. Integrated circuit processors are produced in large numbers by highly automated processes resulting in a low per unit cost. Single-chip processors increase reliability as there are many fewer electrical connections to fail. As microprocessor designs get faster, the cost of manufacturing a chip (with smaller components built on a semiconductor chip the same size) generally stays the same.
Before microprocessors, small computers had been built using racks of circuit boards with many medium- and small-scale integrated circuits. Microprocessors combined this into one or a few large-scale ICs. Continued increases in microprocessor capacity have since rendered other forms of computers almost completely obsolete, with one or more microprocessors used in everything from the smallest embedded systems and handheld devices to the largest mainframes and supercomputers.

1.2                                               OBJECTIVE OF THE STUDY
The objective of this work is to discuss the difference between microprocessor and microcontroller.

1.3                                           SIGNIFICANCE OF THE STUDY
In carrying out this seminar will stop the misuse of microcontroller for microprocessors. The description, application and structure of microcontroller for microprocessors are known in the course of this seminar.

1.4                                            APPLICATION OF THE STUDY
In this work, the application of both microcontroller and microprocessors are discuss separately.
Microcontrollers:  facilitate the operation of the electromechanical systems found in everyday convenience items. Originally, such use was confined to large machines such as furnaces and automobile engines to optimize efficiency and performance. In recent years, microcontrollers have found their way into common items such as ovens, refrigerators, toasters, clock radios, and lawn watering systems. Microcomputers are also common in office machines such as photocopiers, scanners, fax machines, and printers.
The most sophisticated microcontrollers perform critical functions in aircraft, spacecraft, ocean-going vessels, life-support systems, and robots of all kinds. Medical technology offers especially promising future roles. For example, a microcontroller might regulate the operation of an artificial heart, artificial kidney, or other artificial body organ. Microcomputers can also function with prosthetic devices (artificial limbs). A few medical-science futurists have suggested that mute patients might someday be able, in effect, to speak out loud by thinking of the words they want to utter, while a microcontroller governs the production of audio signals to drive an amplifier and loudspeaker.
Microcomputers enjoy immense popularity among electronics hobbyists and experimenters. Perhaps the most widely known and used of these devices belong to the PIC family, manufactured by Microchip Technology, Inc. of Chandler, Arizona. All devices in the PIC family come with a wide variety of development tools, are easy to find, remain relatively inexpensive, and have excellent documentation.
Application of microprocessors: Thousands of items that were traditionally not computer-related include microprocessors. These include large and small household appliances, cars (and their accessory equipment units), car keys, tools and test instruments, toys, light switches/dimmers and electrical circuit breakers, smoke alarms, battery packs, and hi-fi audio/visual components (from DVD players to phonograph turntables). Such products as cellular telephones, DVD video system and HDTV broadcast systems fundamentally require consumer devices with powerful, low-cost, microprocessors. Increasingly stringent pollution control standards effectively require automobile manufacturers to use microprocessor engine management systems, to allow optimal control of emissions over widely varying operating conditions of an automobile. Non-programmable controls would require complex, bulky, or costly implementation to achieve the results possible with a microprocessor.
A microprocessor control program (embedded software) can be easily tailored to different needs of a product line, allowing upgrades in performance with minimal redesign of the product. Different features can be implemented in different models of a product line at negligible production cost.
Microprocessor control of a system can provide control strategies that would be impractical to implement using electromechanical controls or purpose-built electronic controls. For example, an engine control system in an automobile can adjust ignition timing based on engine speed, load on the engine, ambient temperature, and any observed tendency for knocking—allowing an automobile to operate on a range of fuel grades.

 

CLICK HERE FOR MORE RELATED TOPICS/MATERIAL

This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.

All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.

To "DOWNLOAD" the complete material on this particular topic above click "HERE"

To view other related topics click HERE

To "SUMMIT" new topic(s) OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research for your new topic? if yes, click "HERE"

For more information call us on:+234 8146561114 (MTN) or +2347015391124 (AIRTEL)



IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.