DESIGN AND CONSTRUCTION OF A 9 KVA SOLID STATE AUTOMATIC VOLTAGE REGULATOR
USER'S INSTRUCTIONS: The project work you are about to view is on "design and construction of a 9 kva solid state automatic voltage regulator" Please, sit back and study the below research material carefully. This project topic "design and construction of a 9 kva solid state automatic voltage regulator" have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "design and construction of a 9 kva solid state automatic voltage regulator" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "design and construction of a 9 kva solid state automatic voltage regulator" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
      
DESIGN AND CONSTRUCTION OF A 9 KVA SOLID STATE AUTOMATIC VOLTAGE REGULATOR
BY
---
        EE/H2013/01430
        DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
        SCHOOL OF ENGINEERING
        INSTITUTE OF ---
      
DECEMBER,2018
APPROVAL PAGE
        
This is to certify that the research work, "design and construction of a 9 kva solid state automatic voltage regulator" by ---, Reg. No. EE/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on Electrical and Electronics Engineering has been approved.
By
        Engr. ---                                                     Engr. ---
        Supervisor                                                  Head  of Department.
      Signature……………….                           Signature……………….              
……………………………….
         Engr. ---        
      External  Invigilator
DEDICATION
      This  project is dedicated to Almighty God for his protection, kindness, strength  over my life throughout the period and also to my --- for his financial support  and moral care towards me.Also to my  mentor --- for her academic advice she often gives to me. May Almighty God shield  them from the peril of this world and bless their entire endeavour Amen.
      
ACKNOWLEDGEMENT
  
The  successful completion of this project work could not have been a reality  without the encouragement of my --- and other people. My  immensely appreciation goes to my humble and able supervisor mr. --- for his kindness  in supervising this project.
        My warmest  gratitude goes to my parents for their moral, spiritual and financial support  throughout my study in this institution.
        My  appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also  recognize the support of some of the staff of --- among whom are: The General  Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister  ---, my lovely friends mercy ---, ---, --- and many others who were quite  helpful.
      
PROJECT DESCRIPTION: This work “design and construction of a 9 kva solid state automatic  voltage regulator” research material is a complete and well researched project material strictly  for academic purposes, which has been approved by different Lecturers from  different higher institutions. We made Preliminary pages, Abstract and Chapter one of “design and construction of a 9 kva solid state automatic  voltage regulator” visible for  everyone, then the complete material on “design and construction of a 9 kva solid state automatic  voltage regulator” is to be ordered for. Happy viewing!!!
      
The control of irregular voltage supply with fluctuation so as to become stable is carried out using this voltage regulators. Conventional regulators make use of mechanical relays which have a slow switching period but in this work regulators was built around solid state device such as TRIAC. This automatic voltage regulator is designed and constructed in a way that it makes use of silicon controlled rectifier which helps in reducing instability in the system and as well as having an increased switching period. This project demonstrates the use of Microcontrollers in power devices. The Microcontroller allows for accurate monitoring of the mains voltage and display on a seven-segment display. Depending on the voltage level of the mains, the Microcontroller triggers the appropriate TRIAC connected to an auto-transformer in order to stabilize the output voltage fed to the loads or appliances.
TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
        DEDICATION
        ACKNOWELDGEMENT
        ABSTRCT
        TABLE OF CONTENT
CHAPTER ONE
- INTRODUCTION
- BACKGROUND OF THE PROJECT
- AIM/OBJECTIVE OF THE PROJECT
- SIGNIFICANCE OF THE PROJECT
- APPLICATION OF THE PROJECT
- LIMITATION OF THE PROJECT
- SCOPE OF THE PROJECT
- PROJECT ORGANISATION
CHAPTER TWO
LITERATURE REVIEW
        2.0      LITERATURE  REVIEW
        2.1      HISTORITICAL  BACKGROUND OF VOLTAGE STABILIZER 
        2.2      REVIEW OF AC  VOLTAGE STABILIZERS 
        2.3      CONSTANT-VOLTAGE  TRANSFORMER
        2.4       REVIEW OF AN AUTOTRANSFORMER AND ITS OPERATION
CHAPTER THREE
3.0 CONSTRUCTION METHODOLOGY
3.1 BLOCK DIAGRAM OF THE SYSTEM
3.2       CIRCUIT  DIAGRAM
        3.3      CIRCUIT  DESCRIPTION
        3.4      SYSTEM  OPERATION
        3.5      COMPONENTS LIST
        3.6      VOLTAGE STABILIZER  CONTROLLER SECTION 
        3.7      THE BUCK-BOOST PRINCIPLE
        3.8     PULSES-DRIVE CIRCUIT AND THE TRANSFORMER
        3.9     DESCRIPTION OF MAJOR COMPONENTS USED 
CHAPTER FOUR
RESULT ANALYSIS
4.1      CONSTRUCTION PROCEDURE AND TESTING
        4.2      CASING AND PACKAGING
        4.3      ASSEMBLING OF SECTIONS
        4.4      TESTING  OF SYSTEM OPERATION 
        4.5     COST OF PRODUCTION
CHAPTER FIVE
- CONCLUSIONS
- RECOMMENDATION
5.3 REFERENCES
CHAPTER ONE
- INTRODUCTION
Automatic voltage regulator is  a wonderful invention of science, which is an electric device designed to  regulate a constant voltage in a settable level. The main working of a regulator depends upon the laws of  electromechanical physics. It is consist of many active and passive electrical  components like adopters, capacitors, diodes and thermostats.
        There  are many functions of an automatic voltage regulator. AVR or automatic voltage regulator can be used with lot of electric appliances for various  reasons. The basic functions of the automatic voltage regulators are:
        First  and foremost, it is used as a rectifier and as a potential divider. Rectifier  is also an electric device used to convert the alternate current (A.C) to  direct current (D.C) for further electric processing. Most of the electric  appliances require a direct current for their working and can’t work on  alternate current. Regarding potential dividers, they are electric devices used  for the break out of input voltage to bring it to a desired output voltage as  per the requirements. Thus while using an automatic voltage regulator we can  make use of a rectifier and a potential divider at the same time. Means you can  save money because you will have to buy a single automatic voltage regulator  instead of purchasing a potential divider and a rectifier for your electric  appliances.
        There  are many appliances in our homes which need stable electric power for their  running and there might be some damage to the whole electric appliance if there  comes any variation in the input current and voltage. Sometimes this may be  fatal also but electricity is a very merciless killer. To avoid any mishap to  the electric appliances and to us also, which may arise due to any variation in  the voltage or current supply, a voltage stabilizer is essential to be  used a complement to other electric devices.
        AC automatic voltage regulator can also be used in amplifiers. Amplifiers are other  electric devices that compare the sensing voltages to the reference voltages  and help to amplify the effect. You might have seen amplifiers attached to your  home sound systems which boost up the sound effects. The actual sound quantity  will be lower but if the same input is given to an amplifier, the resultant  sound quality and quantity just increases to multiples of the input waves. The  basic running procedure in them is the difference of provided voltages. AC Automatic voltage regulators help  in maintaining a desired voltage for the generators within specified limits.  Thus automatic voltage regulator is also the important part for our amplifier  to work.
        The  previous analog/servo-types of automatic voltage regulators are now replaced by  digital stabilizer.  These types of automatic voltage regulators are higher in functionality and  performance. They are equipped with self functioning controls and start up  functions which make them very useful and easy to handle. Digital converters  increase their precision levels. Simplified operating switches make them very  precise than human handlings. If any fault occurs in the functioning of the  automatic voltage regulators, self diagnostics technique detects the fault in  no time. This leads to more security of the function. The maintenance tool  helps in maintaining an online monitor. Reduced number of parts and wiring in  these typically modern automatic voltage regulators make them more reliable.  Automatic changes are easily dealt with the help of full duplex control  systems.
        The  NeoPower voltage regulators have different sizes. There are automatic  voltage regulators which are so small that they can be easily placed on a small  printed circuit board. They are portable and easy to handle. Some automatic  voltage regulators are very gigantic in size. They may cover a volume of a  small house sometimes. Thus there is a tremendous variety in the automatic  voltage regulators and each has its own specifications. The variation of stabilizer can be  judged by the names of automatic voltage regulators. Each name indicates its  specific functioning and differences from others and there are more than fifty  names to an automatic voltage regulator. Regarding the prices of automatic  voltage regulators, it goes the natural way. If you will buy a smarter one, it  will cost you more and you will buy an older model with normal functioning, it  will cost you less. But keep in mind that whether an AC automatic voltage regulatorcosts  less or high, it becomes irrelevant when it comes to the importance of an regulator in our  daily lives.
- BACKGROUND OF THE PROJECT
There are many fundamental different types of regulator in use some of which are electron mechanically tap changer, solid state tap changer etc. voltage, stabilizer came into being not by normal design and plain, but as a means of solving electrical “Crisis” situation. This crisis situation does rarely occur in developed countries of the world such as Britain, American, Germany.
Their system of generation, transmission and distribution of electricity is such that a devoid of variation of fluctuation in the supplied voltage. Now, by the definition given by K.G Jackson and R. Feinberg, a voltage stabilizer is a piece device incorporated in a circuit to maintain a constant output voltage from a poorly generated power supply. An automatic voltage regulator like any other piece of equipment is a combination of many electrical and like any other piece of equipment is a combination of many electrical and electronic and circuit with the aim of getting the assemble to perform a specified desired task or function.
- OBJECTIVE OF THE PROJECT
The objective of this work is to construct a device whose function is to maintain constant voltage and power line conditioning to the equipment load under a wide variety of conditions, even when the utility input voltage, frequency or system load vary widely. The AVR shall consist of an all copper, multiple tapped, triple shielded isolation transformer and contain independently controlled inverse parallel electronic switches for each of the 7 taps per phase to provide tight voltage regulation. The phase current shall be monitored for zero current recognition to initiate any required tap change. Linear devices shall be used for line synchronization to prevent phase shift errors normally associated with simple CT zero current crossing acquisition. The system shall be microprocessor controlled.
- SIGNIFICANCE OF THE PROJECT
Using triacs in place of mechanical relays, this project  provides automatic voltage regulation for connected AC loads and appliances.  Since no relays are used, the regulator is silent and doesn’t suffer from  problems of wear as with mechanical relays. A seven segment display also shows  input and output voltage levels.
        1.4                                         THE  SCOPE OF THE PROJECT 
        The design and construction of an Automatic Voltage Regulator is the  project we are construction.  We are working on this machine because we  have some idea on how this machine can be constructed and also on how it  works.  We are also doing this because we want to learn more about it.
        As we have mentioned earlier, this device is a protective device that  protects our electrical and electronic appliances out of current and voltage  fluctuation. This is how it works.  When this system is plugged into the  socket or supply, it will receive a minimum voltage of 100v and filter the  current and voltage thereby brings out suitable voltage output to be used by  the devices in it.
        So, we are building or constructing this device to reduce risk and  damages the fluctuation of current / voltage caused by power  fluctuations.  
  1.5                                        LIMITATION  OF THE PROJECT
The  system design shall be capable of operating at an input frequency range of -15%  to +10% of nominal, without clearing protective devices or causing component  failure within the AVR. When generator or utility power is restored, the AVR  shall automatically restart. Upon turn on or restart, the output of the AVR  shall not exceed the specified output regulation limits.
        If the  input voltage or frequency exceeds programmable minimum or maximum set points  for a programmable time period (factory set for 10 seconds), the AVR shall  electronically shut off. When electrical parameters are back within acceptable  limits for a programmable time period (factory set for 60 seconds), the AVR  shall automatically restart to provide conditioned power to the load. If the  input parameters are within acceptable limits, but the output voltage is  outside of acceptable programmed limits, the AVR shall electronically shut off  and require a manual restart.
        The  AVR shall be capable of operating at 100% rated load capacity continuously,  200% rated load for 10 seconds, 500% rated load for 1 second and 1000% rated  load for 1 cycle. Operating efficiency shall be a minimum of 96%, typical at  full load. 
        Transformer  winding shall be continuous copper with electrostatic tripled shielding and  K-13 rated for the purpose of handling harmonic currents.
  Response  Time: The AVR shall respond to  any line voltage variation in 1/2 cycle while operating linear or non-linear  loads, with a load power factor of 0.60 of unity. Peak detection of the voltage  sine wave shall not be permitted to avoid inaccurate tap switching due to input  voltage distortion.
  Operating  Frequency: The AVR shall be capable  of operating at +10% to -15% of the nominal frequency, 50Hz or 60Hz.
  Rating:  this device shall be rated at kVA.
  Access  Requirements: The AVR shall have  removable panels on the front, rear and sides as required for ease of  maintenance and/or repair. 
  Metering: An input meter is provided to  display line voltages
  Ventilation: The AVR isolation transformer shall  be designed for convection cooling. If fan cooling is required for the solid  state electronic switching devices.
  1.7                                      APPLICATIONS  OF STABILIZERS
        Fluctuation in electricity is one of the major problems that affect their  production. Due to high demand of electricity to sustain their operations, it  results to low voltage output which can damage equipments. Therefore, these  companies need specialized devices to help them protect their equipments from  early wear and tear. Voltage regulators are electromechanical constituents that  control the regular voltage outputs. During peak consumption of electricity,  the sudden flow of power can damage electric or electronic machines. On the  other hand, if there is low output of voltage, a machine may fail to function.  Servo Voltage Stabilizer provide safe output to guard varieties of equipments  including ultra modernized music systems, medical equipments LCD, Home Theater,  industrial machines and more. They are designed with special features to  protect equipments which include line noise spike protection, primary switching  technology, auto reset, and overload cutoff protection. In order to preserve  the life of machines, these devices are recommendable in any operation. They  assure that machines are working well all the time especially in peak timings.  Basically, these equipments are used to control the input voltage fluctuations  and at the same time, to maintain an output voltage of +/-0.5% accuracy. They  also help lower MDI and in saving power consumption. There is plenty of Servo  Voltage Stabilizer Manufacturers India that provides range of stabilizers. They  serve range of applications in many industries e.g., Information Technology,  Data processing, Chemical and Textile, Air conditioning, medical and more.  During power interruptions, generators play a very important role in supplying  continuous electricity. These equipments give the residents, workers and  industries the peace of mind that they can continue doing their work without  breaks. These emergency power system guarantees that there will be normal  circuits and they can continue whatever important tasks they are doing. For  businesses, power interruptions can lead to lost of sales and profits. With  assurance that everything will run well even without electricity, electricity  standby power assures full performance of every equipment at all times. Since  stabilizers are needed to maintain every electric or electronic device,  stabilizer for generator guarantees that they are working at full performance  even for a long time. Generators are big investment for any home or business.  Therefore, they must be protected too from electrical surges. Generator Voltage  Regulators are specially designed to control the voltage output. Regularly, the  voltage output must be in the range of 120 to 240 volts. Therefore, these  generator stabilizers provide support that equipments will function at their  best even in the event of power fluctuations or interruptions. 
  1.8                                                     DEFINITION  TERMS
  HV: High Voltage. Any electricity supply  in excess of 650volts. Primarily used for the transmission of electricity over  long distances.
  Kva:  Kilo volt amps. A measurement of the electrical ‘pressure’ and ‘quantity’ to a  building.
  Loads:  The equipment that is using the  electricity supplied to a building.
  Long power cut: Failure of the mains power external to your building, in  excess of 30 minutes to 24 hours.
  LV:  Low Voltage. Electricity supply from  110volts to 650 volts.
  Power cut: A failure of the mains electricity by factors outside of your premises.
  Prime rating: the rating given to a generator when it is used in lieu of  mains power at a varying load. There is normally an overload allowed at this  rating of 10% above the prime rating for 1 hour in 12.
  Single phase power: The electricity produced from one phase of a three phase  winding or from a dedicated singles phase winding.
  Standby power: Maximum power a generator will give normally restricted to  1 hour in 12 for standby purposes only.
  Winding: The copper wire that produces electricity when it passes through a  magnetic field.
  Watts: The total energy supplied by a circuit.
  Surge: Overvoltage supply of electricity causing damage in sensitive equipment  (opposite of Brown out).
  Surge Suppression: Electronic equipment designed to restrain surges such as  lightning strikes.
  AVRs. Automatic voltage regulators. The electronic device which controls the  output voltage of an alternator.
  Base load rating. The rating given to a generator when it is used for  continuous supply of electricity at a given load 24/7.
  Black out. A national or wide area power failure, causing major disruption. For  example.
  Brown out. A drop in the mains voltage (not a total failure) that can cause  degradation of lighting and electronic equipment.
1.9                       PROJECT WORK ORGANISATION
        The various stages involved in the development of this  project have been properly put into five chapters to enhance comprehensive and  concise reading. In this project thesis, the project is organized sequentially  as follows:
        Chapter one of this work is on the  introduction to an automatic voltage stabilizer. In this chapter, the  background, significance, objective limitation and problem of an automatic  voltage stabilizer were discussed.
        Chapter two is on literature review  of an automatic voltage stabilizer. In this chapter, all the literature  pertaining to this work was reviewed.
        Chapter three is on design  methodology. In this chapter all the method involved during the design and  construction were discussed.
        Chapter four is on testing analysis.  All testing that result accurate functionality was analyzed.
        Chapter five is on conclusion, recommendation and references.
CHAPTER TWO: The complete chapter two of “design and construction of a 9 kva solid state automatic voltage regulator” is available. Order full work to download. Chapter two of “design and construction of a 9 kva solid state automatic voltage regulator” consists of the literature review. In this chapter all the related work on “design and construction of a 9 kva solid state automatic voltage regulator” was reviewed.
CHAPTER THREE: The complete chapter three of “design and construction of a 9 kva solid state automatic voltage regulator” is available. Order full work to download. Chapter three of “design and construction of a 9 kva solid state automatic voltage regulator” consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of “design and construction of a 9 kva solid state automatic voltage regulator” is available. Order full work to download. Chapter four of “design and construction of a 9 kva solid state automatic voltage regulator” consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of design and construction of a “design and construction of a 9 kva solid state automatic voltage regulator” is available. Order full work to download. Chapter five of “design and construction of a 9 kva solid state automatic voltage regulator” consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
    
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
You can also visit our facebook Page at fb.me/hyclas to view our related construction (or design) picture.
For more information contact us through Any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
Watsapp No :+2348146561114
To View Our Design Pix: You can also visit our facebook Page at fb.me/hyclas for our design photos/pics.
COUNTRIES  THAT FOUND OUR SERVICES USEFUL
        
        Australia, Botswana, Canada, Europe,  Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria,  Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United  States, United Kindom, Zambia, Zimbabwe, etc
  Support: +234 8146561114 or +2347015391124
    Watsapp No :+2348146561114
Email Address :engr4project@gmail.com
IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.