phonelogo+234 8146561114 or +2347015391124
DESIGN AND CONSTRUCTION OF A DIGITAL MULTIMETER

USER'S INSTRUCTIONS: The project work you are about to view is on "design and construction of a digital multimeter". Please, sit back and study the below research material carefully. This project topic (design and construction of a digital multimeter) have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this " design and construction of a digital multimeter" project research material is to reduce the stress of moving from one school library to another all in the name of searching for " design and construction of a digital multimeter" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.


TITLE PAGE

DESIGN AND CONSTRUCTION OF A DIGITAL MULTIMETER

BY

---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---

DECEMBER,2018



APPROVAL PAGE

This is to certify that the research work, "design and construction of a digital multimeter" by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.

By
---                                                     . ---
Supervisor                                                  Head of Department.
Signature……………….                           Signature……………….        

……………………………….
---
External Invigilator



DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.



ACKNOWLEDGEMENT

The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.


PROJECT DESCRIPTION: This work " design and construction of a digital multimeter" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of " design and construction of a digital multimeter" visible for everyone, then the complete material on " design and construction of a digital multimeter" is to be ordered for. Happy viewing!!!


ABSTRACT

This work is on the design and construction of digital multi-meter using PIC microcontroller. A multimeter is a tool basically used to measure current, voltage and resistance.. In this system, a typical multi-meter may include features such as the ability to measure AC/DC voltage, DC current, resistance, temperature, diodes, frequency and connectivity. This design uses of the PIC microcontroller, voltage rectifiers, voltage divide, potentiometer, LCD and other instruments to complete the measure. When we used what we have learned of microprocessors and adjust the program to calculate and show the measures in the LCD, keypad selected the modes. The software programming has been incorporated using MPLAB and PROTEUS. In this system, the analogue input is taken directly to the analogue input pin of the microcontroller without any other processing. So the input range is from 0V to 5V the maximum source impedance is 2k5 (for testing use a 1k pot). To improve the circuit adds an op-amp in front to present greater impedance to the circuit under test. The output impedance of the op-amp will be low which a requirement of the PIC analogue input is.

TABLE OF CONTENTS
COVER PAGE
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWELDGEMENT
ABSTRACT

CHAPTER ONE
1.0     INTRODUCTION
1.1     BACKGROUND OF THE PROJECT

    1. PROBLEM STATEMENT
    2. AIM AND OBJECTIVE OF THE PROJECT
    3. SIGNIFICANCE OF THE PROJECT
    4. APPLICATION OF THE PROJECT
    5. SCOPE OF THE PROJECT
    6. PROJECT ORGANISATION

CHAPTER TWO
LITERATURE REVIEW

    1. OVERVIEW OF DIGITAL MULTIMETERS
    2. HISTORICAL BACKGROUND OF THE STUDY
    3. GENERAL PROPERTIES OF MULTIMETERS
    4. OPERATIONAL REVIEW OF A MULTIMETER

CHAPTER THREE
3.0     CONSTRUCTION METHODOLOGY
3.1      BLOCK DIAGRAM OF THE SYSTEM
3.2      CIRCUIT DIAGRAM
3.3      CIRCUIT OPERATION AND DESCRIPTION
CHAPTER FOUR
4.0     TESTING AND RESULTS

    1. CONSTRUCTION PROCEDURE AND TESTING
    2. CASING
    3. PACKAGING
    4. MOUNTING PROCEDURE
    5. TESTING
    6. RESULT ANALYSIS
    7. MEASUREMENT SAFETY

CHAPTER FIVE

    1. CONCLUSION
    2. RECOMMENDATION
    3. REFERENCES

     

    CHAPTER ONE
  1. INTRODUCTION

Multimeters as the name suggest the meters that we use to measure multiple quantities with the same instrument. The most basic multimeter measures voltage, current, and resistance. Since we use it for measuring current (A), voltage (V) and resistance (Ohm), we call it as AVO meter. We can categorise the multimeters into two groups, namely analog multimeter and digital multimeter. This work discusses about digital multimeter [3].

1.1                                           BACKGROUND OF THE STUDY
A multi-meter or a multi-tester, also known as a volt/ohm meter or VOM, is an electronic measuring instrument that combines several measurement functions in one unit. A typical multi-meter may include features such as the ability to measure voltage, current and resistance. Modern multi- meters are often digital due to their accuracy, durability and extra features. In a Digital Multi-meter the signal under test is converted to a voltage and an amplifier with an electronically controlled gain preconditions the signal. A Digital Multi-meter displays the quantity measured as a number, which prevents parallax errors. The inclusion of solid state electronics, from a control circuit to small embedded computers, has provided a wealth of convenience features in modern digital meters.

1.2                                                  PROBLEM STATEMENT
Nowadays many measurement instruments have been used in all laboratories throughout the world. Unfortunately, their accuracies are mostly proportional to the time period. As time passes, they may function incorrectly and generate some errors. The mistaken results from such instruments can cause serious problems in economic system and life safety since they will be used for validating product standards in the importing and exporting industries. In order to ensure that they work perfectly, the calibration process is required. In the past, the calibration has to be performed manually and this process usually takes long time. Presently, fully automatic calibration systems have been used worldwide and they play an important role in the calibration of measurement instruments. They can improve measurement accuracy, repeatability and minimize routine jobs.

1.3                                                   AIM OF THE PROJECT
The main aim of the project is to build a hand-held device that uses LCD to display readings useful for basic fault finding and field service work, or a bench instrument which can measure to a very high degree of accuracy.

1.4                                            OBJECTIVES OF THE PROJECT
At the end of this work, the student involves shall be able to build a simple digital multimeter that is capable of measuring current, voltages, temperature and resistance.

1.5                                          ADVANTAGES OF THE PROJECT

  1. They are more accurate than analog multimeters.
  2. They reduce reading and interpolation errors.
  3. The ‘auto-polarity’ function can prevent problems from connecting the meter to a test circuit with the wrong polarity.
  4. Parallax errors are eliminated. If the pointer of an analog multimeter is viewed from a different angle, you will see a different value. This is parallax error. A digital multimeter’s numerical display solves this problem
  5. Digital multimeter displays have no moving parts. This makes them free from wear and shock failures.
  6. The reading speed is increased as it is easier to read.
  7. Unlike analog multimeters, zero adjustment is not required.
  8. Digital output is suitable for further processing or recording and can be useful in a rapidly increasing range of computer controlled applications.
  9. With the advent of Integrated circuits, the size, cost and power requirements of digital multimeters has been drastically reduced.
  10. Accuracy is increased due to digital readout. You can make mistake in reading the scale in analog multimeter, but digital multimeters have a LCD display to show accurate reading.
  11. DMMs can be used in testing continuity, capacitors, diodes and transistors. More advanced digital multimeters can also measure frequency.
  12. The ‘auto-ranging’ feature of a digital multimeter helps in selecting different measurement ranges, which can prevent damage to the meter if the wrong range is selected.
  13. Portable size makes it easy to carry anywhere.
  14. They cause less meter loading effects on the circuits being tested.
  15. Some advanced digital multimeters have microprocessors and can store the readings for further processing.
  16. They have very high input impedance.

1.6                                           LIMITATION OF THE PROJECT

  1. The LCD display depends on a battery or external power source. When the battery is low, the display will be dim, making it difficult to read.
  2. In case of fluctuations or transients, it can record an error.
  3. Warming of the meter during its use can change its properties leading to errors in measured value.
  4. The A/D converter has a limitation on word length which can cause quantization noise giving rise to error in measured value.
  5. There is a voltage limitation. If it is increased beyond the limit, the meter will be damaged.
  6. The digital nature makes it unsuitable for adjusting tuning circuits or peaking tunable responses.
  7. They are expensive due to high manufacturing cost.

1.7                                          APPLICATION OF THE PROJECT
Digital multimeter is one of the trusty workhorses of the electronics test industry for basic fault finding and field service work which is also used by:

  1. Electronics hobbyist
  2. Electronics technicians
  3. Electronics repairers
  4. Electronics labs
  5. Electricians, etc.

1.7                                                         SCOPE OF THE PROJECT
A digital multimeter is a device which provides combined functionality of ammeter, voltmeter and ohmmeter. It is commonly known as DMM. It is most widely used due to its small size, price and ease in operation. A digital multimeter has an analog/digital converter that provides a digital readout.
This system is to measure AC/DC voltage, current, diodes, temperature, connectivity, frequency and resistance using PIC microcontroller. To carry out the design consideration and production of a useful consumer product of PIC microcontroller. The whole process of the digital multi-meter is controlled by PIC 16F887 microcontroller.

1.8                                                         PROJECT ORGANISATION

The work is organized as follows: chapter one discuses the introductory part of the work, chapter two presents the literature review of the study,  chapter three describes the methods applied, chapter four discusses the results of the work, chapter five summarizes the research outcomes and the recommendations.

CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of " design and construction of a digital multimeter" is also available. Order full work to download. Chapter two of " design and construction of a digital multimeter" consists of the literature review. In this chapter all the related work on " design and construction of a digital multimeter" was reviewed.

CHAPTER THREE: The complete chapter three of " design and construction of a digital multimeter" is available. Order full work to download. Chapter three of " design and construction of a digital multimeter" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.

CHAPTER FOUR: The complete chapter four of " design and construction of a digital multimeter" is available. Order full work to download. Chapter four of " design and construction of a digital multimeter" consists of all the test conducted during the work and the result gotten after the whole work

CHAPTER FIVE: The complete chapter five of "design and construction of a digital multimeter" is available. Order full work to download. Chapter five of " design and construction of a digital multimeter" consist of conclusion, recommendation and references.

 

CLICK HERE FOR MORE RELATED TOPICS/MATERIAL


To "DOWNLOAD" the complete material on this particular topic above click "HERE"

Do you want our Bank Accounts? please click HERE

To view other related topics click HERE

To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research your new topic? if yes, click "HERE"

Do you have any question concerning our post/services? click HERE for answers to your questions


For more information contact us through any of the following means:

Mobile No phonelogo:+2348146561114 or +2347015391124 [Mr. Innocent]

Email address emailus:engr4project@gmail.com

Watsapp No whatsapp.html :+2348146561114


COUNTRIES THAT FOUND OUR SERVICES USEFUL

Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124

Watsapp Nowhatsapp.html
:+2348146561114


E
mail Address emailus:engr4project@gmail.com


FOLLOW / VISIT US VIA:

tweeter instagram.htmlfacebook logo