DESIGN AND CONSTRUCTION OF A DISTANCE METER USING ULTRASONIC SENSOR AND 8051 MICROCONTROLLER
An ultrasonic sensor to detect the distance measurement system is introduced in the paper. The paper presents the working principle of ultrasonic distance measurement, the structure properties of ultrasonic sensors, the ultrasonic sensors in the transmitter and receiver probe and their inter-action problem in details. Ultrasonic sensor is a component of detecting the distance. 8051 microcontroller is the control component. The system mainly consists of five parts, such as the smallest single chip system, the ultrasonic transmission circuit, the ultrasonic receiving circuit, the digital display circuit and the alarm circuit.
CHAPTER ONE
1.1 INTRODUCTION
Distance is a numerical description of how far apart objects are. In physics or everyday usage, distance may refer to a physical length, or an estimation based on other criteria (e.g. "two counties over"). In most cases, "distance from A to B" is interchangeable with "distance from B to A". In mathematics, a distance function or metric is a generalization of the concept of physical distance. A metric is a function that behaves according to a specific set of rules, and is a way of describing what it means for elements of some space to be "close to" or "far away from" each other.
The distance meter, which is the focus of this study is used for accurately determining the distance of an object without contact using ultrasonic sensor. The distance meter is frequently used in the industrial sector and especially with professions relating to construction, such as architecture, surveying, carpentry, masonry, locksmiths.
Distance meter is a popular application for ultrasonic technology. This device measures geometric distances, heights, lengths, levels and positions in a non-contact process. To achieve this, all the components work together in a perfectly coordinated overall system. This system is made up of a ultrasonic sensor, the transmitter and receiver optics and sophisticated electronics and algorithms for time or phase measurement.
1.2 OBJECTIVE OF THE PROJECT
Ultrasonic Sensor or Module is used in this work for distance measurement. This article explains you how to measure the distance using 8051 microcontroller. This system measures the distance up to 4 meters with an accuracy of 3 mm.
1.3 APPLICATIONS OF THE PROJECT
- Used to measure the obstacle distance.
- This system used in automotive parking sensors and obstacle warning systems.
- Used in terrain monitoring robots.
1.4 LIMITATIONS OF THE PROJECT
- This system is not able to measure longer distances.
1.5 SCOPE OF THE PROJECT
Generally, the distance can be measured using pulse echo and phase measurement method. Here, the distance can be measured using pulse echo method. The ultrasonic module transmits a signal to the object, then receives echo signal from the object and produces output signal whose time period is proportional to the distance of the object.
The major components in this project are 8051 (AT89C51) Microcontroller, Ultrasonic Sensor and LCD Display. The TRIGGER and ECHO pins of the Ultrasonic Sensor are connected to the P3.1 and P3.2 pins respectively. LCD data pins are connected to the PORT1 of the microcontroller and controller pins RS, RW and EN are connected to the P3.6, GND and P3.7 respectively. Here, the LCD (Liquid Crystal Display) is used to display distance of the object.
1.6 PURPOSE OF THE PROJECT
The purpose of this work is to measure distance using ultrasonic sensor. The ultrasonic distance meter is used for accurately determining the distance of an object or span without contact. This ultrasonic distance meter is attractive due to its ease of use and its high level of accuracy in the results recorded.
1.7 PROJECT WORK ORGANISATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this work is on the introduction to this study. In this chapter, the background, significance, objective application and scope of this study were discussed.
Chapter two is on literature review of this study. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.
This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.
All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research for your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
You can also visit our facebook Page at fb.me/hyclas to view more our related construction (or design) pics
For more information contact us through Any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
Watsapp No :+2348146561114
To View Our Design Pix: You can also visit our facebook Page at fb.me/hyclas for our design photos/pics.
IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.