DESIGN AND CONSTRUCTION OF AN FM WIRELESS MICROPHONE
USER'S INSTRUCTIONS: The project work you are about to view is on "design and construction of an fm wireless microphone ". Please, sit back and study the below research material carefully. This project topic design and construction of an fm wireless microphone have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this design and construction of an fm wireless microphone project research material is to reduce the stress of moving from one school library to another all in the name of searching for design and construction of an fm wireless microphone research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
BY
---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
APPROVAL PAGE
This is to certify that the research work, design and construction of an fm wireless microphone by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work design and construction of an fm wireless microphone research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of design and construction of an fm wireless microphone visible for everyone, then the complete material on design and construction of an fm wireless microphone is to be ordered for. Happy viewing!!!
This paper presents the design and construction of a wireless microphone FM transmitter with a range of about 100meters. Wireless microphone FM transmitter with a range of about 100meters. The use of cable microphones creates inconvenience and obstruction while in use so it becomes paramount to design and construct a wireless microphone using Frequency Modulation as link instead of a cable with a reception which should be portable, affordable and operate efficiently. The transmitter works using a 9v dc supply which operates on the principle of FM (frequency modulation) band.
The design consists of four parts which include; the input unit (electric microphone), audio amplifier unit, modulator and finally the oscillator unit. The input unit is a microphone which is used to provide the signal in the form of speech amplified by the audio amplifier; the amplified signal is then transferred to the modulator unit where the signal is being superimposed on the carrier wave in a suitable manner. The oscillating unit which is an LC oscillator provides the necessary high frequency needed for transmitting the signal through an antenna. The output is a signal transmitted through a distance of 100m which is transmitted at a frequency of 102.3MHZ.
TABLE OF CONTENTS
COVER PAGE
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWELDGEMENT
ABSTRACT
CHAPTER ONE
1.1 INTRODUCTION
1.2 BACKGROUND OF THE PROJECT
1.3 AIM OF THE PROJECT
1.4 SIGNIFICANCE OF THE PROJECT
1.5 LIMITATION OF THE PROJECT
1.6 SCOPE OF THE LIMITATION
1.7 APPLICATION OF THE PROJECT
1.8 DIFINITION OF TERMS
1.9 PROJECT WORK ORGANISATION
CHAPTER TWO
LITERATURE REVIEW
2.1 OVERVIEW OF TRANSMITTER
2.2 IONOSPHERIC PROPAGATION
2.3MODULATION
2.4 NEEDS FOR MODULATION PROCESS
2.5 FREQUENCY MODULATION
2.6 CHARACTERISTIC OF AN FREQUENCY MODULATION WAVE
2.7 FREQUENCY MODULATION DETECTORS
2.8 METHOD OF GENERATING AND DETECTING F.M
2.9 OSCILLATION
2.10 DETECTION
2.11 THE RADIO TUNER
CHAPTER THREE
DESIGN METHODOLOGY
3.1 SYSTEM BLOCK DIAGRAM
3.2 SYSTEM CIRCUIT DIAGRAM
3.3 SYSTEM DESCRIPTION AND OPERATION
3.4 DESCRIPTION OF COMPONENTS USED
CHAPTER FOUR
4.1 RESULT ANALYSIS
4.2 CONSTRUCTION PROCEDURE AND TESTING ANALYSIS
4.3 CASING AND PACKAGING
4.4 ASSEMBLING OF SECTIONS
4.5 TESTING OF SYSTEM OPERATION
CHAPTER FIVE
- CONCLUSION
- REFERENCE
CHAPTER ONE
- INTRODUCTION
This project work is wireless fm microphone which can be used for recording and paying back your voice wirelessly.
Cordless or wireless microphone and amplifier units are generally used during public address programs, stage entertainment programs or in all forms of occasions where voice signals are required to be amplified so as to make them audible over a wider area and distance.
However since microphones are normally held by the hand while speaking, the unit needs to be perfectly hassle free so that the individual holding it is able to move about the premise freely. In this article we learn how to construct a simple wireless microphone circuit and use exactly for the above intended purpose.
The main active part of the circuit is the microphone, MAX4467 ic and voltage controlled oscillator (vco), while the other supporting passive parts are also very few making the item very compact as far as part count is concerned.
A microphone converts voice or sound vibrations in the air into electrical pulses. They are generally used for public address purposes and entertainment programs. Here we learn a very simple way of making an FM wireless microphone circuit that requires no wires for the specified operation
Older types of mics carried a wire or an electrical cord from the mic up to the amplifier, making things very cumbersome and inconvenient for the user. The cord used to dangerously dangle about the legs of the user making him vulnerable to entanglement and even stumbling because of the mess.
This led to the invention of much sophisticated wireless types of mics which became much comfortable to handle and use on any platform, moreover the distance of the user from the amplifier also was no longer an issue now. However the invention could take place only after the invention and improvements in the FM broadcast technology, because the wireless mic actually incorporated a small FM transmitter which sent the voice signals in the form of FM waves to the FM receiver before it could get amplified in to the loudspeakers.
These wireless mics are still being used effectively for the intended applications and have become quite indispensable with the specific users.
Though the device may look quite sophisticated with its operations, but did you know it is actually very easy to construct as an electronics engineering student. The full details of this design as discussed in this work.
1.2 BACKGROUND OF THE PROJECT
Electronics deals with current flow and the application therefore current is established by movement of electron-hence electronics. Electrons on their own are constituent of the atom. We shall bargain therefore by considering our need for electronics in every day activities because to has become obvious. As the world grow computerized, we ought to have the knowledge and understanding of electronics for certain reason.
As a matter of fact, our satisfaction these days mostly depend on electronics. These satisfactions may come in different ways. For instance one cam now stay in his house or in motor to communicate with distance person through telephones; one can tune radio or television on station inside his house, to mails. Some information can be transmitted by the aid of microphone. All these and more make life easier and less stressful for us.
The study of electronics is not so simple as may be perceived by people who professionalized in its operation.
It deals with the movements of electrons and electromagnetic wave in short everything that happens in electronics is invisible. “Electronics, according to advanced leaner dictionaries” is the science and technology of electronics phenomena, devices and system, as in radio, Television, tape recorder, compute etc.
Considering the project I am writing now, the radio transmitter. Radio transmitter generates energy at a definite frequency and convey this energy to the transmitting aerial for radiation. To obtain a useful radiated signals, information must be superimposed on the radio waves. In the continuous wave (C.W) transmitters used for radio, telegraphy, the desired information is added by interrupting the radio frequency oscillations in accordance with a telegraphic code. In radio telephone (modulated) transmitters the information is added by modulating either the amplitude or the frequency of the radio frequency carrier wave the speech or music to be transmitted.
1.3 AIM OF THE PROJECT
The main aim of this work is make a microphone circuit that requires no wires for the specified operation.
1.4 SIGNIFICANCE OF THE PROJECT
- This device provides greater freedom of movement for the user.
- Avoidance of cabling problems common with wired microphones, caused by constant moving and stressing the cables
- Reduction of cable "trip hazards" in the performance space
- Galvanic isolation of microphone, avoiding ground loops between microphone and other electrical instruments on stage.
1.5 LIMITATION OF THE PROJECT
- Sometimes limited range (a wired balanced XLR microphone can run up to 300 ft or 100 meters). Some wireless systems have a shorter range, while more expensive models can exceed that distance.Possible interference with or, more often, from other radio equipment or other radio microphones, though models with many frequency-synthesized switch-selectable channels are now plentiful and cost effective.
- Operation time is limited relative to battery life; it is shorter than a normal condenser microphone due to greater drain on batteries from transmitting circuitry, and from circuitry giving extra features, if present.
- Noise or dead spots (places where it doesn't work, especially in non-diversity systems)Limited number of operating microphones at the same time and place, due to the limited number of radio channels (frequencies).
- Higher cost in proportion to fewer other features
1.6 SCOPE OF THE PROJECT
Wireless microphone is a microphone without a physical cable connecting it directly to the sound recording or amplifying equipment with which it is associated. Also known as a radio microphone, it has a small, battery-powered radio transmitter in the microphone body, which transmits the audio signal from the microphone by radio waves to a nearby receiver unit, which recovers the audio. The other audio equipment is connected to the receiver unit by cable. Wireless microphones are widely used in the entertainment industry, television broadcasting, and public speaking to allow public speakers, interviewers, performers, and entertainers to move about freely while using a microphone to amplify their voices.
There are many different standards, frequencies and transmission technologies used to replace the microphone's cable connection and make it into a wireless microphone. They can transmit, for example, in radio waves using UHF or VHF frequencies, FM, AM, or various digital modulation schemes. Some low cost (or specialist) models use infrared light. Infrared microphones require a direct line of sight between the microphone and the receiver, while costlier radio frequency models do not.
1.7 APPLICATION OF THE PROJECT
Wireless FM transmitters used in many different environments. Some of the more popular uses are churches, sporting events, fitness centers, homes, cars, correctional facilities and holiday light shows. Other applications include
• Non-commercial broadcasting.
• Commercial broadcasting.
• Television audio.
• Public Service communications.
• Radio Service Communications.
• Point-to-point microwave links used by telecommunications companies.
1.7 DEFINITION OF TERMS
FM – Frequency Modulation
VHF – Very High Frequency (30MHz to 300MHz)
UHF – Ultra High Frequency (300MHz to 3GHz)
VFO – Variable Frequency Oscillator
VCO – Voltage Controlled Oscillator
PLL – Phase Locked Loop
Oscillator – device that generates a frequency
1.8 PROJECT WORK ORGANISATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this work is on the introduction to this study. In this chapter, the background, significance, objective, scope, application, definition of terms, limitation and problem of this study were discussed.
Chapter two is on literature review of the study. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.
CHAPTER FIVE
5.1 CONCLUSION
At the end of this work, an Frequency modulation (FM) microphone was designed which is also known as FM wireless microphone.
Definition: frequency modulation (fm) transmitter is a device that transmits audio signal (message, music etc. (at a particular frequency band it transmits through an electromagnetic wave. It operates at frequency band of 108.1MHZ and over a distance of 16 meter. Suitable low value this may be achieved by separation, screening or balancing out by means of signal fed from the transmitter. The acho signal received by the receiver will now be a weaker signal of the same type of fm as that rate retreated by delayed by a time corresponding to the two may path to the reflecting object.
An fm carrier signal contains information (or intelligence wish to convey) in the form of frequency variation above and below the center frequency of the carrier for recovering the information, we must fast convey the fm as a modulation RF voltage across the transistor.
A simple method of converting frequency variation into voltage variation is to make use of the principle that reactance (of coil or capacitor) carriers with frequency. When an fm signal is applied to are inductor, the current flowing through it varies amplitude according to the changes in frequency of the fm signal depend on the amplitude often original modulating AF signal.
Hence, the current in inductor varies as the amplitude of the original modulating signal.
The change in current is passed through a resistor the produced corresponding change in voltage.
The carrier wave is supplied by crystal controlled oscillator at the carrier frequency. It is followed by a timed buffer amplifier and an RF output amplifier.
Source of A.F signal is a microphone. The audio signal is amplified by a low – level audio amplifier and finally, by a power amplifier. It is then confined with carrier to produce a modulated carrier wave, which is ultimately radiated out in the free spaced by the antenna.
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of design and construction of an fm wireless microphone is also available. Order full work to download. Chapter two of design and construction of an fm wireless microphone consists of the literature review. In this chapter all the related work on design and construction of an fm wireless microphone was reviewed.
CHAPTER THREE: The complete chapter three of design and construction of an fm wireless microphone is available. Order full work to download. Chapter three of design and construction of an fm wireless microphone consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of design and construction of an fm wireless microphone is available. Order full work to download. Chapter four of design and construction of an fm wireless microphone consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of design and construction of an fm wireless microphone is available. Order full work to download. Chapter five of design and construction of an fm wireless microphone consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No :+2348146561114
Email Address :engr4project@gmail.com
FOLLOW / VISIT US VIA: