USER'S INSTRUCTIONS: The project work you are about to view is on "design and construction of sound absorber (acoustic) system for electrical communication lab". Please, sit back and study the below research material carefully. This project topic "design and construction of sound absorber (acoustic) system for electrical communication lab" have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "design and construction of sound absorber (acoustic) system for electrical communication lab" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "design and construction of sound absorber (acoustic) system for electrical communication lab" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
BY
---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
DECEMBER,2018
APPROVAL PAGE
This is to certify that the research work, "XX" by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "design and construction of sound absorber (acoustic) system for electrical communication lab" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "design and construction of sound absorber (acoustic) system for electrical communication lab" visible for everyone, then the complete material on "design and construction of sound absorber (acoustic) system for electrical communication lab" is to be ordered for. Happy viewing!!!
Noise has been defined as an unwanted signal. Sound noise is a major societal problem, whose health, environmental and even economic impact is very important. According to the World Health Organization (WHO), noise is an acoustic phenomenon that produces an uncomfortable hearing sensation. Populations whose buildings are housed in areas at high risk of noise are exposed to multiple diseases resulting from noise pollution. To remedy this, it is important to think of choosing the right materials with higher acoustic absorption coefficient. This work is aimed at building a sound absorber system for electrical communication lab.
TABLE OF CONTENTS
COVER PAGE
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND OF THE PROJECT
- PROBLEM STATEMENT
- OBJECTIVE OF THE PROJECT
- SIGNIFICANCE OF THE PROJECT
- SCOPE OF THE PROJECT
- LIMITATION OF THE PROJECT
- METHODOLOGY
- PROJECT ORGANISATION
CHAPTER TWO
LITERATURE REVIEW
- OVERVIEW OF ACOUSTIC MATERIAL
- HISTORICAL BACKGROUND OF ACOUSTIC MATERIALS
- PROPERTIES OF ACOUSTIC MATERIAL
- USES OF ACOUSTIC MATERIAL
- ACOUSTIC MATERIALS AVAILABLE IN MARKET
- MOST COMMON APPLICATION AREAS OF ACOUSTIC MATERIAL
- MEASURES OF ACOUSTICAL MATERIALS EFFECTIVENESS
CHAPTER THREE
METHODOLOGY
- PRESENTATION OF SOME MATERIALS
- MEASURING THE SOUND ABSORPTION COEFFICIENT USING THE KUNDT TUBE
- METHOD USED TO DETERMINE THE ACOUSTIC ABSORPTION COEFFICIENT
CHAPTER FOUR
4.0 RESULT AND DISCUSSION
CHAPTER FIVE
- CONCLUSION
- REFERENCES
Acronyms
- TWA—Time Weighted Average
- TL— Sound Transmission Loss
- dB — Decibel
- NRC— Noise Reduction Coefficient
- STC— Sound Transmission Class
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
Acoustical materials are a variety of foams, fabrics, metals, etc. used to quiet workplaces, homes, automobiles, and so forth to increase the comfort and safety of their inhabitants by reducing noise generated both inside and outside of those spaces. Acoustical materials are used in two major ways: as soundproofing, by which noise generated from outside a given space is blocked from entering the space; and, as sound absorbing, where noise generated within a space is reduced inside the space itself (Gobain, 2012).
Sound and noise are managed by four methods: blocking, absorbing, diffusing, and isolating.
- Blocking relates to the use of soundproofing.
- Absorption works by converting sound energy into heat.
- Diffusion seeks to scatter sound without deadening a room.
- Isolating is done at the source of the noise itself, by placing a compressor on isolation mounts, for instance.
Acoustic absorption refers to the process by which a material, structure, or object takes in sound energy when sound waves are encountered, as opposed to reflecting the energy. Part of the absorbed energy is transformed into heat and part is transmitted through the absorbing body. The energy transformed into heat is said to have been 'lost'.
When sound from a loudspeaker collides with the walls of a room part of the sound's energy is reflected, part is transmitted, and part is absorbed into the walls. Just as the acoustic energy was transmitted through the air as pressure differentials (or deformations), the acoustic energy travels through the material which makes up the wall in the same manner. Deformation causes mechanical losses via conversion of part of the sound energy into heat, resulting in acoustic attenuation, mostly due to the wall's viscosity. Similar attenuation mechanisms apply for the air and any other medium through which sound travels (Gobain, 2012).
The fraction of sound absorbed is governed by the acoustic impedances of both media and is a function of frequency and the incident angle (Parker, 2009). Size and shape can influence the sound wave's behavior if they interact with its wavelength, giving rise to wave phenomena such as standing waves and diffraction.
Acoustic absorption is of particular interest in soundproofing. Soundproofing aims to absorb as much sound energy as possible converting it into heat or transmitting it away from a certain location.
In general, soft, pliable, or porous materials serve as good acoustic insulators - absorbing most sound, whereas dense, hard, impenetrable materials reflect most.
However, the noise produced by industries, streets, construction sites, garages, handling sites, individuals or groups of individuals, and even aircraft become more troublesome or even harmful for to neighboring people according to the level where they are located. Indeed, the ear is adversely affected by noise level greater than 120 dB (decibels). This can lead to rupture of the eardrum (Houngan et al., 2013). As such, inhabitants of buildings located in the vicinity of the endless sources of noise are constantly exposed to unpleasant acoustic effects that will lead sooner or later diseases. To remedy this, it urges to think about the choice of the appropriate materials with a significant acoustic coefficient to ward off the harmful effects caused by sound rumors over the health of the population, during the construction of residential buildings in areas with high risk of noise.
For any building, contractors must check the standards on insulation against aerial noises and shock-related noises, insulation of facades, noise produced by technical equipment or reduction of some local reverberation (NBN, 2017).
In a school Lab, how well the Lab absorbs sound is quantified by the effective absorption area of the walls, also named total absorption area. This work discusses the construction of a sound absorber or acoustic system for electrical communication lab using acoustic (Melamine foams) as the main acoustic material.
1.2 PROBLEM STATEMENT
Loud noise can increase stress, anxiety, and blood pressure, and put people at greater risk of stroke and heart disease. Conversely, a well-designed building with the proper acoustics can influence a person’s mental health and overall sense of well-being for the better.
No one enjoys noise in any form. In the area of the building (Electrical Communication Lab), noise from walking, conversation, equipment are the sources of annoyances that can go from a deterioration in the quality of life to direct effects on the health of occupants. As such, the fight against noise is an important issue which translates into regulations, acoustic standards that set minimum acoustic performance expected inside the buildings so as to provide the acoustic comfort for the occupants and users.
1.3 AIM AND OBJECTIVES OF THE STUDY
The main aim this work is to build a sound absorber or acoustic system for electrical communication lab. The objectives of the work are:
- To design a sound absorber in our electrical communication lab using form and other acoustic materials
- To reduce environmental noise
- To increase human comfort.
- To determine the sound absorption coefficient of some selected acoustic materials.
1.4 SIGNIFICANCE OF THE STUDY
This study is used to identify local materials with significant acoustic coefficients that can be used to improve the acoustic comfort of electrical communication Lab.
This research work will throw more light on the best techniques for absorbing noise most especially in a room/school. This study will also be designed to be of immense benefit to all builders, user and residents of any building.
1.5 SCOPE OF THE STUDY
1.6 LIMITATION OF THE STUDY
As we all know that no human effort to achieve a set of goals goes without difficulties, certain constraints were encountered in the course of carrying out this project and they are as follows:-
Difficulty in information collection: I found it too difficult in laying hands of useful information regarding the sound absorption coefficient of the selected acoustic materials
Financial Constraint: Insufficient fund tends to impede the efficiency of the researcher in sourcing for the relevant sound acoustic materials.
Time Constraint: The researcher will simultaneously engage in this study with other academic work. This consequently will cut down on the time devoted for the research work.
1.8 PROJECT ORGANISATION
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of "design and construction of sound absorber (acoustic) system for electrical communication lab" is also available. Order full work to download. Chapter two of "design and construction of sound absorber (acoustic) system for electrical communication lab" consists of the literature review. In this chapter all the related work on "design and construction of sound absorber (acoustic) system for electrical communication lab" was reviewed.
CHAPTER THREE: The complete chapter three of "design and construction of sound absorber (acoustic) system for electrical communication lab" is available. Order full work to download. Chapter three of "design and construction of sound absorber (acoustic) system for electrical communication lab" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of "design and construction of sound absorber (acoustic) system for electrical communication lab" is available. Order full work to download. Chapter four of "design and construction of sound absorber (acoustic) system for electrical communication lab" consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of "design and construction of sound absorber (acoustic) system for electrical communication lab" is available. Order full work to download. Chapter five of "design and construction of sound absorber (acoustic) system for electrical communication lab" consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No :+2348146561114
Email Address :engr4project@gmail.com
FOLLOW / VISIT US VIA: