DESIGN AND FABRICATION OF A FOUNDRY SAND MIXER USING LOCALLY AVAILABLE MATERIALS
Most small foundry shops mix their sand manually which is not efficient since homogenous mix cannot be guaranteed and even when foundry mixer are available most of them are imported costing the nation huge foreign exchange. A foundry sand mixer capable of mixing foundry sand has been designed and fabricated using locally available material. The sand mixer components machine frame, mixing pan, motor support, gear box speed reducer, Shaft, discharge door and Mixing blades were designed ,produced and assembled together to produce the mixer. A step-turned shaft of diameters 23mm and 33mm attached to a 2hp, 3 phase electric motor to transmit the torque required to effectively turn and mix the sand in the pan. The mixer test results show that the average mixing time of the sand mixer to mix 20kg of sand was 14minutes and the mixer efficiency was 52%.The fabricated mixer compare favourably with the the imported existing one which has an efficiency of 59%.The application of this sand mixer by foundry shops will eliminate the use manual effort which is cumbersome, time wasting and inefficient.It will also save the the country of huge foreign exchange used in the importation of foundry sand mixers.
CHAPTER ONE
1.1 INTRODUCTION
Mixing of any material or combination of materials is accomplished by moving the materials together against themselves. The mixer, regardless of design or materials to be blended, exists only to accomplish a uniform distribution of the components. Whether mixing concrete, polymers, liquids, powders, or silica sand with differing chemical system, the purpose of the mixing machine is to move the materials against themselves.
In our industry we are mixing sands with very small amounts of different binding agents, all having different and variable properties. The first sand that exits the chamber is obviously not the same as the sand a few seconds behind it, as there is really nothing for the first sand to move against. Even with today’s technologies (timers, flowmeters, valving), we cannot get away from this basic goal: to make the first sand usable, and exactly the same as the sand right that follows it.
It is a simple process to catch the first 1-2 seconds of sand that exits the mixer and then put it in the molds as soon as the pattern is covered. A properly trained and motivated mixer operator will waste very little sand.
The object of a continuous mixer is to produce sand for quality cores or molds using just enough binder to obtain the desired casting results at the lowest possible cost. Chemicals are a high percentage of the casting cost. Lower resin levels reduce costs, improve the reclamation process, and improve the working environment. In order to keep chemicals levels as low as possible it is important to control the temperature variables.
The preferred temperature for sand and resin is in the 85-95°F range. The set time of PUNB is either doubled or halved for every 18°F change in sand temperature. Unless sand temperature is well controlled, production rates will suffer. Even if the strip time is reduced with additional catalyst (expensive) the evaporation of solvents remains retarded due to the low sand temperature resulting in a higher potential for gas defects.
Heating sand with a traditional fluidized resistance element design can be costly because compressed air is cool and therefore uses a lot of power to raise the sand temperature 20-30° at the flow rates required.
This high kW requirement can add to the monthly electric bill if it is a demand-based system. Fluidized bed heaters with hot water require substantially less energy and are more accurate because the residence time in the comparatively larger chambers is longer, but capital costs are usually double the cost of resistance element designs. While the end temperature is important, the consistency and repeatability of temperature is equally important. The capital and operating costs of correctly sized sand heaters are high, but usually can be justified by lowered resin requirements, greater production levels, fewer scrap molds/cores, and more consistent production.
Resin temperatures should be as close as possible to the correctly heated sand. The normal response to cold resins is to install a drum heater or heat lamps. While these are helpful, they can be problematic; if left on too long or at too high a temperature, the characteristics of the resin can be dramatically changed.
As the solvent evaporates or resin advances, the performance, viscosity, and metering characteristics will change.
These vessel heating techniques usually only heat a couple inches into the drum or tote. The majority of the liquid’s temperature is unchanged – and this difference in temperature within a single drum is another variable that needs to be eliminated.
The correct technique is to have a dedicated recirculation pump that takes the chemical from the bottom of the container, runs it through an in-line heating device, and returns it to the top of the container. This system keeps the chemical throughout the container at the same temperature at all times. Additions to this container should never be more than 25% of the container size to allow the heating system to recover as quickly as possible while still in production.
1.2 OBJECTIVE OF THE PROJECT
This objective of this work is to fabricate a locally made foundry sand mixing equipment and more particularly to a means and method for demand responsive custom mixing and blending core sand, resin and catalyst in accord with the particular requirements of one or adjacent machines, in close proximity, to provide high quality cores with the fast curing time for high\production rates.
1.3 PURPOSE OF THE PROJECT
The mixer, regardless of design or materials to be blended, exists only to accomplish a uniform distribution of the components. Whether mixing concrete, polymers, liquids, powders, or silica sand with differing chemical system, the purpose of the mixing machine is to move the materials against themselves.
1.4 ADVANTAGES OF THE PROJECT
- Large openings in the mixing pan provide easy access for maintenance
- All of the major assemblies (drives and gear units) are located outside the mixing pan
- Wear parts are easy to replace
- A fully loaded mixer can easily be restarted
- Using a frequency inverter for motor control permits the energy input to be adjusted variably over the whole mixing cycle for shorter processing time, better molding sand properties and the potential for energy savings.
Small, medium-sized sand preparation systems and the most difficult mixing applications.
1.6 SCOPE OF THE PROJECT
This Sand Mixer quickly, uniformly and mechanically manipulate a heterogeneous mass of sand materials, of varying aggregate sizes, into uniformly blended and bonded homogenous product. It consists of cylindrical pan, four heavy blades, which rotate in a circular path about a vertical shaft. A discharge door is provided at the bottom of the pan. The four blades are divided into two sets of two blades each (one set on top the other) and they are slightly off the true radius to allow for free rotation as well as eliminate any wear due to friction which may arise from contact between the blades and the pan. The design theory of the sand Mixer considers the geometrical parameters of the Mixer, which includes the frame mixing pan, blades, shaft and driving mechanisms.
1.7 LIMITATION OF THE PROJECT
1. When mixing sand, you need to coat thick clay slurry on the surface of the sand, and you need to use high-power devices with rubbing function, otherwise, it is impossible to get good quality sand.
2. Since after mixture, the sand has very high strength, when molding, the sand is not easy to flow, and it is difficult to pound, and hand molding is not only laborious but also needs certain skills, while machine molding needs complex and large device.
3. The stiffness of the mold is not high, and the dimensional accuracy of mixings is relatively poor.
REFERENCES
[1] Benson, C. H. and Bradshaw, S.” User Guideline For Foundry Sand In Green Infrastructure, Recycled Materials ” Resource Center, University of Wisconsin-Madison, Madison, 2011.
[2] American Foundry Society (AFS). “Foundry Industry Bench marking Survey: Industry Practices Regarding the Disposal and Beneficial Reuse of Foundry Sand –Results and Analysis ”, http://www.strategicgoals.org/benchmarking/foun dry.html.Accessed on January, 2012.
[3] Beeley, P. R. “ Foundry technology”, Butterworth Scientific, London , 2001.
[4] Inwelegbu, J. O and Nwodoh, T. A. “FPGA controller design and simulation of a portable Dough mixing machine”, Nigerian Journal of Technology, Vol.30, No.1, 2011, pp 47-63.
[5] Sothea, K., Fazli, N., Hamdi, M. and Aoyama, H. “Development of a crush and mix machine for composite brick fabrication”, Proceeding of International conference on advances in materials and processing.
This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.
All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research for your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through Any of the following means:
Mobile No :+2348146561114 or +2347015391124
Email address :engr4project@gmail.com
Watsapp No :+2348146561114
IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.