DESIGN AND FABRICATION OF A LIGHT BOX INTERFEROMETRY
USER'S INSTRUCTIONS: The project work you are about to view is on "design and fabrication of a light box interferometry". Please, sit back and study the below research material carefully. This project topic "design and fabrication of a light box interferometry" have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "design and fabrication of a light box interferometry" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "design and fabrication of a light box interferometry" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
BY
---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
APPROVAL PAGE
This is to certify that the research work "design and fabrication of a light box interferometry" by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "design and fabrication of a light box interferometry" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "design and fabrication of a light box interferometry" visible for everyone, then the complete material on "design and fabrication of a light box interferometry" is to be ordered for. Happy viewing!!!
Light box interferometry is a well-developed and very old technique for optical measurements. The thesis describes the design of a vertical scan interferometer system to study the surface topography of surfaces down to nanometers. The desired properties of the system are its simplicity, portability and compact size, making it suitable for use in general labs and for educational purposes. By acquiring a sequence of images of the deformed fringe pattern, the surface topography can be observed, giving greater understanding of the surface roughness.
The principle behind the system is coherence peak sensing where the resulting fringe pattern of the object gets changed in accordance with its surface topography. To accomplish this, individual components of the interferometer were studied and a prototype was built in the lab. A series of experiments were performed which validate the working of the system. The results of the validation which are produced in the report give the accuracy of the system. The output from the prototype interferometer is processed by MATLAB to decode the surface topography of the object under measurement. The design of the prototype is also discussed. Possible application of this device for sensing the surface topography of a cylindrical object is also put forward.
ABBREVIATIONS
CCD – Charge Coupled Device OPD – Optical Path Difference PZT – Piezoelectric Transducer LED – Light Emitting Diode GUI – Graphical User Interface
AVI – Audio Video Interleave
TABLE OF CONTENTS
COVER PAGE
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWELDGEMENT
ABSTRACT
CHAPTER ONE
1.1 INTRODUCTION
1.2 AIM AND OBJECTIVE OF THE STUDY
1.3 ADVANTAGES OF THE STUDY
1.4 PROBLEM OF THE STUDY
1.5 SCOPE OF THE STUDY
1.6 PURPOSE OF THE PROJECT
1.7 APPLICATION OF THE STUDY
CHAPTER TWO
LITERATURE REVIEW
- OVERVIEW OF THE STUDY
- SUPERPOSITION OF WAVES
- THEORY OF OPTICAL INTERFERENCE
- LIGHT BOX INTERFEROMETRY EQUATION
CHAPTER THREE
3.0 METHODOLOGY
3.1 SYSTEM SETUP
CHAPTER FOUR
4.1 RESULTS FROM PROTOTYPE INTERFEROMETER
4.2 VALIDATION OF THE PROTOTYPE INTERFEROMETER
4.3 TRANSFORMATION OF MATRIX
4.4 OBSERVATIONS
4.5 POSSIBLE DESIGN
CHAPTER FIVE
- CONCLUSION
- REFERENCES
CHAPTER ONE
INTRODUCTION
Light box interferometry is a widely used technique for measurement of surface topography of objects over large areas. Systems which use this technique can measure areas which are equal to the field of view of the instrument. Interferometric optical topographers are widely used to study surface topography due to the high measurement accuracy, non-contact, rapid data acquisition and analysis.
Even though the conventional interferometers are extensively used they are built for ruggedness and have many features and different techniques of measurement integrated which are not effectively used by all. Moreover they have features for automated adjustment which can be done manually to some extent.
In this project we try to replicate the light box interferometer by constructing a proto type in the lab based on the light interferometry measurement technique. With measurement results from the constructed interferometer the feasibility for practical usage is discussed.
The report also presents the use of the technology on surfaces and analyzes the accuracy of the prototype compared with the commercial interferometer.
1.2 AIM AND OBJECTIVE OF THE STUDY
Aim of this project is to construct a coherence peak light box interferometer and define its accuracy. To achieve this goal this project includes the design, construction, experiments and validation of the interferometer system.
1.3 ADVANTAGES OF THE STUDY
i. Capable of measuring a wide field of view.
ii. Measurement in sub-nanometer range is possible.
iii. Quick measurement.
1.4 PROBLEM OF THE STUDY
- No or limited angular characteristic
- Use is limited on certain objects
light box interferometers can only measure when there is a good reflection. There, it does not support measurement capabilities on a wide variety of objects.
Measurements may also not be possible when there is a significant difference between the light reflected from the reference mirror and light reflected from the measurement area. (light box interferometers handle mirrored surfaces well, but cannot measure spiky or bumpy samples or nonreflective parts. - Requires tilt correction
Prior to measuring, sample tilt correction must be performed using a goniometric stage. Tilted samples can cause closely-spaced interference patters, which hinder measurement accuracy. Some light box interferometry systems are equipped with a tilt mechanism that automatically corrects the sample tilt. - Low resolution for XY stage measurements. The resolution for XY stage measurements are low due to the low number of sampling data sets (approximately 300,000). Some light box interferometry systems can scale up to use approximately 980,000 data sets.
- Sensitive to vibrations
Place of installation is limited due to the equipment’s high sensitivity to vibrations. Shock-absorbing tables are necessary for installation. - No or limited angular characteristic
- Use is limited on certain objects
Light box interferometers can only measure when there is a good reflection. There, it does not support measurement capabilities on a wide variety of objects.
Measurements may also not be possible when there is a significant difference between the light reflected from the reference mirror and light reflected from the measurement area. (White light interferometers handle mirrored surfaces well, but cannot measure spiky or bumpy samples or nonreflective parts. - Requires tilt correction
Prior to measuring, sample tilt correction must be performed using a goniometric stage. Tilted samples can cause closely-spaced interference patters, which hinder measurement accuracy. Some light box interferometry systems are equipped with a tilt mechanism that automatically corrects the sample tilt. - Low resolution for XY stage measurements
The resolution for XY stage measurements are low due to the low number of sampling data sets (approximately 300,000). Some light box interferometry systems can scale up to use approximately 980,000 data sets. - Sensitive to vibrations
Place of installation is limited due to the equipment’s high sensitivity to vibrations. Shock-absorbing tables are necessary for installation.
1.5 SCOPE OF THE STUDY
Light interference occurs when there is a difference in distance traveled by the light (light path) from the surface of a target object to a certain point; the light box interferometer uses this phenomenon to measure the surface roughness of a sample. The figure on the right is a structural diagram of an interferometer. The light emitted from the source (semiconductor laser, etc.) is separated into reference and measurement beams. While the reference beam is passed through the reference mirror through a half mriror, the measurement beam is reflected and guided to the sample surface. The passed beam is reflected by the reference mirror to the CCD image sensor and forms an interference pattern. The other beam is reflected off the sample surface, passes the half mirror, and forms an image through the CCD image sensor.
1.6 PURPOSE OF THE PROJECT
The light box interferometer is designed so that the optical path length from the CCD element to the reference mirror and that from the CCD element to the sample surface are the same. The asperity on the sample surface causes these path lengths to be unequal, which results in forming an interference pattern at the CCD element. The number of lines in the interference pattern is translated to peaks and troughs (heights) on the sample surface.
1.7 APPLICATION OF THE STUDY
Light box interferometry is used for different purposes. The main applications are:
- The measurement of chromatic dispersion. Here, the dispersive optical element is placed in one interferometer arm, and the detector signal is monitored while scanning the relative arm length through some range. Around zero arm length difference, interferometric wiggles occur, whereas the signal is about constant for large arm length differences. With strong dispersion, the recorded interferogram becomes broader. By applying a Fourier transform algorithm to the recorded interferogram, it is possible to retrieve the complex reflection or transmission coefficient of the device under test, and numerical differentiation reveals the wavelength-dependent group delay and chromatic dispersion.
- The measurement of distances. Compared with interferometers based on narrow-linewidth laser sources, the typical ambiguity issues are avoided. A special case is the measurement of surface profiles. For example, a Michelson interferometer with a CCD camera as detector may be used. Again, images are recorded for different arm length differences. Each pixel displays the interferometric wiggles around the point of zero arm length difference at the given transverse location. Unlike the situation in a narrow-band interferometer, no phase-unwrapping procedure is required, so that even rough surfaces can be easily handled.
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of "design and fabrication of a light box interferometry" is also available. Order full work to download. Chapter two of "design and fabrication of a light box interferometry" consists of the literature review. In this chapter all the related work on "design and fabrication of a light box interferometry" was reviewed.
CHAPTER THREE: The complete chapter three of "design and fabrication of a light box interferometry" is available. Order full work to download. Chapter three of "design and fabrication of a light box interferometry" detector consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of "design and fabrication of a light box interferometry" is available. Order full work to download. Chapter four of"design and fabrication of a light box interferometry"detector consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of "design and fabrication of a light box interferometry" is available. Order full work to download. Chapter five of "design and fabrication of a light box interferometry" detector consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No
:+2348146561114
Email Address
:engr4project@gmail.com
FOLLOW / VISIT US VIA: