DEVELOPMENT AND CALIBRATION OF CENTER OF PRESSURE APPARATUS
USER'S INSTRUCTIONS: The project work you are about to view is on "development and calibration of center of pressure apparatus". Please, sit back and study the below research material carefully. This project topic (development and calibration of center of pressure apparatus) have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "development and calibration of center of pressure apparatus" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "development and calibration of center of pressure apparatus" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
BY
---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
DECEMBER,2018
APPROVAL PAGE
This is to certify that the research work, "development and calibration of center of pressure apparatus" by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "development and calibration of center of pressure apparatus" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "development and calibration of center of pressure apparatus" visible for everyone, then the complete material on "development and calibration of center of pressure apparatus" is to be ordered for. Happy viewing!!!
The Centre of Pressure Apparatus has been designed to determine the static thrust exerted by a fluid on a submerged surface and allow comparison of the measured magnitude and position of this force with simple theory. A fabricated quadrant is mounted on a balance arm, which pivots on knife-edges. The knife-edges coincide with the centre of arc of the quadrant. Thus, of the hydrostatic forces acting on the quadrant when immersed, only the force on the rectangular end face gives rise to a moment about the knife-edges. The balance arm incorporates a balance pan for the weights supplied and an adjustable counterbalance. This assembly is mounted on top of an acrylic tank, which may be leveled by adjusting screwed feet. An indicator attached to the side of the tank shows when the balance arm is horizontal. Water is admitted to the top of the tank by a flexible tube and may be drained through a cock in the side of the tank. The water level is indicated on a scale on the side of the quadrant.
TABLE OF CONTENT
Title page i
Certification ii
Dedication iii
Acknowledgement iv
Abstract v
Table of content vi
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
1.2 AIM OF THE PROJECT
1.3 OBJECTIVES OF THE STUDY
1.4 SCOPE OF THE STUDY
1.5 PURPOSE OF THE PROJECT
1.6 SIGNIFICANCE OF THE STUDY
CHAPTER TWO
LITERATURE REVIEW
- OVERVIEW OF HYDROSTATIC PRESSURE
- HISTORICAL BACKGROUND OF HYDROSTATIC PRESSURE
- HYDROSTATIC EXAMPLE (DAM)
- HISTORICAL USAGE FOR SAILBOATS
- REVIEW OF MOVEMENT OF CENTER OF PRESSURE FOR AERODYNAMIC FIELDS
CHAPTER THREE
METHODOLOGY
- SYSTEM DESCRIPTION
- EQUIPMENTS AND APPARATUS
- OBJECTIVES OF THE EXPERIMENT
- METHOD
- TECHNICAL DATA PROCEDURE
CHAPTER FOUR
- RESULT
- CALCULATION
CHAPTER FIVE
- CONCLUSION
- REFERENCES
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
The center of pressure is the point where the total sum of a pressure field acts on a body, causing a force to act through that point. The total force vector acting at the center of pressure is the value of the integrated vectorial pressure field. The resultant force and center of pressure location produce equivalent force and moment on the body as the original pressure field. Pressure fields occur in both static and dynamic fluid mechanics. Specification of the center of pressure, the reference point from which the center of pressure is referenced, and the associated force vector allows the moment generated about any point to be computed by a translation from the reference point to the desired new point. It is common for the center of pressure to be located on the body, but in fluid flows it is possible for the pressure field to exert a moment on the body of such magnitude that the center of pressure is located outside the body.
1.2 AIM OF THE PROJECT
The main aim of this work is to setup an apparatus that is used in determining the centre of pressure and the thrust on a body immersed in a fluid basically water.
1.3 OBJECTIVE OF THE PROJECT
i. To determine the hydrostatic thrust acting on a plane surface immersed in water.
ii. To determine the position of the line of action of the thrust and to compare the position determined by experiment with the theoretical position.
1.4 SCOPE OF THE STUDY
From this experiment we are able to measure the moment due to the total fluid thrust on a wholly, or partially, submerged plane surface to be directly measured and compared with theoretical analysis. The plane area may be tilted relative to the vertical so that the general case may be studied. The water is contained in a clear Perspex quadrant, the cylindrical sides of which have their central axes coincident with the axis about which the turning moments are measured. The total fluid pressures on the secured surfaces therefore exert no moment about this pivot, the only moment being due to the fluid pressure on the plane test surface. This moment is simply measured by weights suspended from a level arm.
1.5 PURPOSE OF THE PROJECT
The purpose of this work is:
- Determination of force due to hydrostatic pressure
- Determination of Center of pressure
1.6 SIGNIFICANCE OF THE STUDY
- Very efficient
- Rigid construction
- Easy to operate
- Long lasting
1.7 OVERVIEW OF HYDROSTATIC PRESSURE
The air around us at sea level presses down on us at 14.5 pounds per square inch (1 bar). We do not feel this pressure since the fluids in our body are pushing outward with the same force. But if you swim down into the ocean just a few feet and you will start to notice a change. You will start to feel an increase of pressure on your eardrums. This is because of an increase in hydrostatic pressure which is the force per unit area exerted by a liquid on an object. The deeper you go under the sea, the greater the pressure pushing on you will be. For every 33 feet (10.06 meters) you go down, the pressure increases by 14.5 psi (1 bar).
Hydrostatic pressure is the pressure that is exerted by a fluid at equilibrium at a given point within the fluid, due to the force of gravity. Hydrostatic pressure increases in proportion to depth measured from the surface because of the increasing weight of fluid exerting downward force from above.
If a fluid is within a container then the depth of an object placed in that fluid can be measured. The deeper the object is placed in the fluid, the more pressure it experiences. This is because the weight of the fluid is above it. The more dense the fluid above it, the more pressure is exerted on the object that is submerged, due to the weight of the fluid.
1.8 HISTORICAL BACKGROUND OF HYDROSTATIC PRESSURE
Some principles of hydrostatics have been known in an empirical and intuitive sense since antiquity, by the builders of boats, cisterns, aqueducts and fountains. Archimedes is credited with the discovery of Archimedes' Principle, which relates the buoyancy force on an object that is submerged in a fluid to the weight of fluid displaced by the object. The Roman engineer Vitruvius warned readers about lead pipes bursting under hydrostatic pressure.[2]
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of "development and calibration of center of pressure apparatus" is also available. Order full work to download. Chapter two of "development and calibration of center of pressure apparatus" consists of the literature review. In this chapter all the related works on "development and calibration of center of pressure apparatus" were reviewed.
CHAPTER THREE: The complete chapter three of "development and calibration of center of pressure apparatus" of an automated light system using photo-sensitive switch" is available. Order full work to download. Chapter three of "development and calibration of center of pressure apparatus" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of "development and calibration of center of pressure apparatus" is available. Order full work to download. Chapter four of "development and calibration of center of pressure apparatus" consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of "development and calibration of center of pressure apparatus" is available. Order full work to download. Chapter five of "development and calibration of center of pressure apparatus" consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No :+2348146561114
Email Address :engr4project@gmail.com
FOLLOW / VISIT US VIA: