+234 8146561114 (MTN) or
+2347015391124 (AIRTEL)
EFFECT OF TEMPERATURE ON THE VISCOSITY OF WATER, MILK AND CORN OIL

 

ABSTRACT
Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or tensile stress. In everyday terms (and for fluids only), viscosity is "thickness" or "internal friction". Thus, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity. Put simply, the less viscous the fluid is, the greater its ease of movement (fluidity). Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. For example, high-viscosity felsic magma will create a tall, steep stratovolcano, because it cannot flow far before it cools, while low-viscosity mafic lava will create a wide, shallow-sloped shield volcano.
The viscosity of a liquid is a measure of that fluid's resistance to flow when acted upon by an external force such as a pressure differential or gravity. Viscosity is a general property of all fluids, which includes both liquids and gases. While the basic concept of viscosity is the same for water, milk and corn oil.
The aim of this project is to show that changes in temperature affect the viscosity of water, milk and corn oil differently. In this work, the effect of temperature on water, milk and corn oil are discussed in the chapters of this work.

TABLE OF CONTENT
Title page
Approval page
Dedication
Acknowledgement
Abstract
Table of content

CHAPTER ONE
1.0    Introduction
1.2   background of study
1.3   statement of problem
1.4   objective of the study
1.5   significance of the study
1.6   research questions
1.7   hypotheses

CHAPTER TWO
Review of related literature

  •       Review of Viscosity overview

2.1      Review of velocity tables
2.2     review Etymology of viscosity
2.3     review of  types of viscosity
2.4     review non-standard units of viscosity
2.5    review of viscosity coefficient
2.6     review of viscosity measurement
2.7     review of unit of viscosity
2.8     difference between dynamic and kinematic viscosity

CHAPTER THREE
RESEARCH DESIGN AND METHODOLOGY
3.1 Viscosity of water
3.2 Effect of temperature on the viscosity of a water
3.3 measuring the viscosity of water
3.4 Viscosity of milk
3.5Effect of temperature on the viscosity of milk

3.6 Viscosity of corn oil
3.7 Effect of temperature on the viscosity of milk
3.8 viscosity testing
3.9 Testing the viscosity of different liquid
CHAPTER FOUR
4.0 The concept of viscosity
4.1 Definition and measurement of viscosity
4.2 Factors affecting viscosity
4.3 Definition of terms

CHAPTER FIVE
    • Summary
    • Conclusion
    • References

 

 

CHAPTER ONE

  • INTRODUCTION

1.1                                             BACKGROUND OF THE STUDY
The viscosity of a liquid is a measure of that fluid's resistance to flow when acted upon by an external force such as a pressure differential or gravity. Viscosity is a general property of all fluids, which includes both liquids and gases. While the basic concept of viscosity is the same for liquids and gases, changes in temperature affect the viscosity of liquids and gases differently.
In most cases, lower viscosity is beneficial to air pollution control applications. The following five phenomena, commonly encountered in air pollution control, are directly affected by liquid viscosity:

  • Pump performance
  • Size distribution of liquid droplets
  • Settling rate of droplets
  • Absorption of gaseous and particulate pollutants by liquids
  • Gravitational settling of solids in liquid

Viscosity relates directly to pump performance and therefore, to the system connected to the pump. Prior to designing a pump, it is important to determine the viscosity of the fluid at the expected operating conditions. An increase in liquid viscosity generally increases the required net inlet pressure and the required pump input power. Furthermore, an increase in the viscosity generally corresponds to a decreasein the maximum allowable pump speed.
The viscosity affects the size of liquid particles. Liquid droplets can be formed by vapor condensation in stack gas or by spraying liquid into the gas stream (i.e. air pollution control equipment). Increasing the viscosity tends to increase the size of the droplets, which in turn increases their gravitational settling rates.
For a given mass of liquid, smaller sized droplets (lower viscosity) yield greater total surface area than do larger droplets. Greater surface area provides increased contact between the gas stream and the liquid and is generally beneficial for cooling a gas stream and collecting pollutants. Absorption (discussed later in this Module) is an important technique used by many types of air pollution control equipment to collect pollutants. The rate of absorption is partly dependent on both the size distribution and settling rate of droplets entering the gas stream, both of which are affected by viscosity.

Suspended solids in a liquid of a relatively quiescent state will settle by gravity if the solids have a greater density than the surrounding liquid, which is generally the case in air pollution work. Suspended solids settle more quickly in liquids with lower viscosities than with higher viscosities. You know from experience that a marble, dropped into a bucket of water, reaches the bottom more quickly than if that same marble were dropped into a bucket of honey

1.2    STATEMENT OF PROBLEM
The problem noticed was during the application of flow – meter. With the variable area design, the float moves up a vertical tube as the flow rate increases. At constant flow, the float is in equilibrium between the upward force of the fluid and the downward force of gravity. Imagine the water rushing past the float.
The water easily moves around the cross-sectional perimeter of the float with virtually no fluid sticking to the float. As the fluid viscosity increases however, fluid starts sticking to the float, building layer upon layer of fluid drag zones, each with a different relative velocity. This effect will cause a slow moving viscous liquid to yield the same buoyant force as a fast moving low viscosity liquid. This effect can be quite large, as one U.S. food processor found out. This particular company wanted to measure the flow of canned milk in their lines. Even though the viscosity was only 15 centipoise, the variable area flowmeter, which was calibrated for water, read two times too high. At higher viscosities, this effect is even more pronounced. Another manufacturer of metal stamping equipment was using a variable area meter to read a water soluble oil/water mixture at 60 centipoise. In this example, the customer's meter read six times too high.
In order to make a flowmeter insensitive to viscosity, the key is to use a flow technology that relies on some static property of the fluid, like conductivity, incompressibility or heat capacity. One technology, the oval gear flowmeter, uses the property of incompressibility. While all fluids can be compressed to some extent, the effects are so negligible as to not affect the intrinsic accuracy of the oval gear flowmeter.

1.3 OBJECTIVE OF THE STUDY

The objective of the study which should be understands to be the purpose or the aim of studying the effect of temperature on the viscosity of water, milk and corn oil.
We all know that viscosity affect the size of any liquid. So, the purpose of this study is to know how temperature affects the viscosity of water, milk and corn oil. That is, to understand and ways temperature affect the viscosity of these different liquids – water, milk and oil.

1.4 SIGNIFICANCE OF STUDY

Viscosity is a principal parameter when any flow measurements of fluids, such as liquids, semi-solids, gases and even solids are made. Brookfield deals with liquids and semi-solids. Viscosity measurements are made in conjunction with product quality and efficiency. Anyone involved with flow characterization, in research or development, quality control or fluid transfer, at one time or another gets involved with some type of viscosity measurement.
Many manufacturers now regard viscometers as a crucial part of their research, development, and process control programs. They know that viscosity measurements are often the quickest, most accurate and most reliable way to analyze some of the most important factors affecting product performance.
The ability to gather data on a material's viscosity behavior gives manufacturers an important "product dimension". Knowledge of a material's rheological characteristics is valuable in predicting pumpability and pourability, performance in a dipping or coating operation, or the ease with which it may be handled, processed, or used. The interrelation between rheology and other product dimensions often makes the measurement of viscosity the most sensitive or convenient way of detecting changes in color, density, stability, solids content, and molecular weight.

1.5 RESEARCH QUESTION

  • Does temperature have any effect on viscosity?
  • Does any relationship exist between viscosity of liquid and gas?
  • Does temperature affect the viscosity of water, milk and corn oil?
  • What is the difference between the viscosity of water, milk and corn oil?

1.6        HYPOTHESIS
Water has the lowest viscosity and the fastest rate of flow followed by milk, while corn oil has the highest viscosity.

CLICK HERE FOR MORE RELATED TOPICS/MATERIAL

This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.

All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.

To "DOWNLOAD" the complete material on this particular topic above click "HERE"

To view other related topics click HERE

To "SUMMIT" new topic(s) OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research for your new topic? if yes, click "HERE"

For more information call us on:+2348146561114 (MTN) or +2347015391124 (AIRTEL)



IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.