INSTALLATION OF A SOLAR PANEL
USER'S INSTRUCTIONS: The project work you are about to view is on "installation of a solar panel". Please, sit back and study the below research material carefully. This project topic "installation of a solar panel" have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "installation of a solar panel" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "installation of a solar panel" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
BY
---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
APPROVAL PAGE
This is to certify that the research work, "installation of a solar panel" by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "installation of a solar panel" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "installation of a solar panel" visible for everyone, then the complete material on "installation of a solar panel" is to be ordered for. Happy viewing!!!
The 200W solar system was determined by load assessment, solar panel number determination, battery requirement and then inverter sizing. A complete solar panel rated at 200w was however purchased, together with 2 no. 150A solar battery, 1500W inverter and also 10A charge controller. These were assembled together with necessary protective gadgets like cut out switches; to give the 200W expected. The solar panel was mounted outside the building to allow for maximum collection of sun energy. It is expected that the system will help the department meet up with its office duties even when central power is not available.
TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWELDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
INTRODUCTION
- BACKGROUND OF THE PROJECT
- PROBLEM STATEMENT
- AIM AND OBJECTIVES OF THE PROJECT
- SIGNIFICANCE OF THE PROJECT
- SCOPE OF THE PROJECT
- ADVANTAGES OF SOLAR POWER
- APPLICATIONS OF SOLAR ENERGY
- LIMITATION OF THE PROJECT
- ADVANTAGES AND DISADVANTAGES OF SOLAR PANELS
- DEFINITION OF TERMS
CHAPTER TWO
LITERATURE REVIEW
2.1 OVERVIEW OF THE STUDY
2.2 OVERVIEW OF SOLAR ENERGY
2.3 MAXIMIUM ANGLE OF INCLINATION
2.4 SOLAR PANEL
2.5 HISTORICAL BACKGROUND OF SOLAR PANEL
2.6 REVIEW OF DIFFERENT PHOTOVOLTAIC MOUNTING SYSTEM
CHAPTER THREE
3.0 METHODOLOGY
3.1 REQUIRED TOOLS
3.2 SOLAR SYSTEM COMPONENTS
3.3 SOLAR PANEL INSTALLATION PROCESS
3.5 INSTALLATION CALCULATION
CHAPTER FOUR
4.1 TESTING OF SOLAR PANELS
4.2 SOLAR PANEL MAINTENANCE
CHAPTER FIVE
5.0 CONCLUSION AND RCOMMENDATION
- CONCLUSION
- RECOMMENDATION
5.3 REFERENCES
CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND OF THE STUDY
The solar inverter is a critical component in a solar power system. It performs the conversion of the variable DC output of the Photovoltaic (PV) module(s) into a clean sinusoidal 50 or 60 Hz AC current that is then applied directly to the commercial electrical grid or to a local, off-grid electrical network. A solar cell (also called photovoltaic cell) is the smallest solid-state device that converts the energy of sunlight directly into electricity through the photovoltaic effect. A Photovoltaic (PV) module is an assembly of cells in series or parallel to enlarge or increase voltage and/or current. A Panel is an assembly of modules on a structure. An Array is an assembly of panels at a site. Typically, communications capability is included so users can monitor the inverter and report on power and operating conditions, provide firmware updates and control the inverter grid connection.
At the heart of the inverter is a real-time microcontroller. The controller executes the very precise algorithms required to invert the DC voltage generated by the solar module into AC. This controller is programmed to perform the control loops necessary for all the power management functions necessary including DC/DC and DC/AC. The controller also maximizes the power output from the PV through complex algorithms called maximum power point tracking (MPPT). The PV maximum output power is dependent on the operating conditions and varies from moment to moment due to temperature, shading, soilage, cloud cover, and time of day so adjusting for this maximum power point is a continuous process. For systems with battery energy storage, the controller can control the charging as well as switch over to battery power once the sun sets or cloud cover reduces the PV output power. (Aditee P. Bapat et al 2013).
The general objective of the system is to provide efficiency, steadiness in the use of power appliances, by ensuring continuous availability of power supply even in the absence of mains. Uninterruptability of the system made it possible to eliminate all suspense from mains outage during the execution of an important and urgent assignment as may be required. For better production of the system, the system was operated at a fully charged condition of the battery.
The project was rated 200W of 220V and 50Hz. It was expected that at this condition, it was favourable to carry load of the stipulated power. Loads of low power factors are not helpful since they produce spikes. Overloading is not potent to provide zero change over time and the inverter had LEDs which indicates mains failure and battery discharge and system fault.
1.2 Statement of the Problem
If there is one factor that has perpetually maintained the status of Nigeria as a less developed country, it is its electricity sector. Till date, many households and businesses cannot be guaranteed of 24 hours supply of electricity from the public grid. At this stage of Nigeria’s social and economic development, the country cannot deliver adequate energy to the citizens despite huge financial resources that have been expended in the sector. Rather, Nigerians have continued to rely on electricity generators for their power supply, fuel marketers are taking significant portion of households’ and businesses’ incomes to supply power, noise pollution from regular humming generators have become integral part of living for many Nigerians with imaginable consequences on their health. Because of these problems, there is a need to design and construct the solar panel inverter which will complement the electricity supply from the public grid. It is less noisy and does not have any consequence(s) on human health. (Lookman Oshodi 2014).
1.3 Aim and Objectives
1.3.1 Aim
The aim of this project is to design and install a 200Watt solar power system.
1.3.2 Objectives
The objectives of this project are;
- understand how solar energy works
- understand to install solar panel
- To provide efficiency, steadiness in the use of power appliances, by ensuring continuous availability of power supply even in the absence of mains.
- To eliminate all suspense from mains outage during the execution of an important and urgent assignment as may be required.
- To design a simple and rugged technology; this will utilize the appropriate use of home or local electrical appliances.
1.4 Significance of the Study
The solar inverter is the second most important (and second most expensive) component of a solar PV system. It’s important because it converts the raw Direct Current (DC) solar power that is produced by your solar panels into Alternating Current (AC) power that comes out of the wall sockets. Inverters also have technology that maximizes the power output of that DC energy.
The use of solar power has many advantages. First, the energy from the sun is free and readily accessible in most parts of the world. Moreover, the sun will keep shining until the world's end. Also, silicon from which most photovoltaic cells are made is an abundant and nontoxic element (the second most abundant material in the earth's crust).
Second, the whole energy conversion process is environmentally friendly. It produces no noise, harmful emissions or polluting gases. The burning of natural resources for energy can create smoke, cause acid rain and pollute water and air. Carbon dioxide, CO2, a leading greenhouse gas, is also produced in the case of burning fuels. Solar power uses only the power of the sun as its fuel. It creates no harmful by-product and contributes actively to the reduction of global warming.
1.5 SCOPE OF STUDY
This solar power source makes it possible to provide a clean reliable supply of alternative electricity free of sags or surges which could be found in the line voltage frequency (50Hz). This project design aims at creating a 200 watts power source which can be utilized as a regular power source by remote rural industries and private individuals at home or in the office. This project involves the design and construction of a 200Watt Solar PV (photovoltaic) system which involves a solar panel, car battery and an inverter. Furthermore, as a consumer is generating his or her own electricity they also will benefit from a reduction in their electricity bills. This solar power source makes it possible to provide a clean reliable supply of alternative electricity free of sags or surges which could be found in the line voltage frequency.
The solar power system (SPS) system achieved this by direct current from solar panel and by rectifying the standard main supply, using the direct current to charge the batteries and to provide clean alternative power by passing the energy a filter system. It has zero change over time and LEDs which indicates mains fail and battery discharge level and it provides 100% protection against line noise, spikes surges and audio frequency interference.
1.6 ADVANTAGES OF SOLAR POWER
• |
The energy and heat from the sun is free and unlimited. |
• |
Solar power is non-polluting. Solar power usage does not emit any greenhouse gases or harmful waste. |
• |
Solar power is perfect and saving for power generation in remote areas or where the cost of expansion utility grid is high. |
• |
Solar power is versatile. It can be used for low-power purpose as well as larger ones - from hand-held calculators, watches, and solar powered garden lights to water heaters, cars, buildings and satellites. |
• |
Solar power system requires very little maintenance and last for many years. |
1.7 APPLICATIONS OF SOLAR ENERGY
• |
Daylighting |
- Solar Thermal
Solar thermal technologies can be used for water heating in homes or commercial and space heating or space cooling for buildings. Solar water heating systems use different type of collectors to gather and store the solar energy for heating water used in residential, commercial and industrial applications. For space heating and cooling in warm temperature region, the thermal mass materials is needed to keep building cool by absorbing solar energy during a day and radiate stored heat to cooler atmosphere at night. However they can be used in cold temperature areas to maintain warmth as well.
- Solar Electric Power Generation
Solar energy can be directly converted to electricity by photovoltaic cells. Solar photovoltaic (PV) systems provide electricity to home or business for lighting, TV, fan, computer, stereo, refrigerator, water pump or livestock feeders, without connection to utility grid. They are also used to power watches, calculators and sign lights.
1.8 LIMITATION OF THE PROJECT
The estimated lifetime of the solar panels is about 30 years. The main defects of these systems are the cost of the panels and the storage of energy.
The second obvious problem with this kind of system is that energy is produced only during daylight hours and is not suitable for any situation, being a form of energy electricity hardly accumulate in large quantities.
During the installation, is not always easy to track or position the panel to the right place that will attract sun rays.
1.9 ADVANTAGES AND DISADVANTAGES OF SOLAR PANELS
Advantages
Solar panels are clean - while generating electricity from sunlight, solar panels produce virtually no pollution, whereas burning fossil fuels releases large quantities of toxic gases into the atmosphere.
For the consumer, solar panels can free the individual from reliance on the power grid and the monopolistic energy supplier. Once you make the initial investment in hardware, you will have free electricity for years to come.
Fossil Fuels are limited - Although fossil fuel reserves are expected to run dry within the next century, solar power is clean, abundant, and will remain a renewable resource that can meet all of Earth's energy needs for billions of years to come.
Disadvantages solar panels
Admittedly, while solar power is certainly much cleaner than the burning of fossil fuels, and moderately cleaner than the production of nuclear power, solar panels installation are very pricey and in many years demand for solar panels exceeds supply. When we ask ourselves - why are solar panels necessary, we must consider the costs of production as well as the costs of using much more harmful means of producing electricity. Solar Panels also require more square yardage per kilowatt for the power-generating facility than fossil fuel power plants or nuclear power.
1.10 Definition of Terms
Inverters
The inverter takes DC power from the charged battery bank and converts it to AC power for the typical household lights and appliances. Once the number of watt-hours required for a day is determined, the peak loads need to be ascertained to properly size the inverter. This is the number of watts used based on all appliances and loads that will be running at one time. A water pump and washing machine motor is an example of what may be the peak load requirements. A 1/2 HP (horse power) pump and washing machine will use about 1875 (adjusted) watts per hour. If this represents the total peak loads, an inverter that will be able to supply at least 1875 watts of continuous power from the battery bank; say one in the 200 watt range will be needed. It's a good idea to start out the system with the size of inverter you plan to grow into, as upgrading to newer, larger models is costly. (Pure Energies 2014) There are two basic types of inverters.
Central Inverters
Central inverters are well-tested and reliable systems that have been around for decades. These are the most common types of inverters. With central inverters, every solar panel is wired in a “string” to the inverter box. The conversion from DC to AC occurs at one central location, such as a garage. Because the solar panels are wired in “series,” each panel’s power output depends on all of the panels working. For example, In a string of Christmas tree lights. If one bulb goes out, the whole string of lights go out until the bad bulb is replaced. So, if shade from a tree covers one panel, it can seriously diminish the power produced by the whole solar system until the shade clears. This is why an accurate shade analysis is so important.
Micro Inverters
Micro inverters are relatively new to solar. Instead of converting the DC to AC power at a central location, micro inverters are installed right under each solar panel. The main advantage to micro inverters is the ability for each solar panel to transmit power into the house. In other words, each panel produces its own solar power and keeps producing out solar watts regardless of what happening to the panel beside it. The down side of micro inverters is that they can be more expensive and take more labour cost to replace each inverter. Also, because they are so new, micro inverter reliability is unproven outside of lab testing. (Pure Energies 2014).
The BOS (Balance of System)
There are many other less well known and less expensive parts to a solar system. Installers typically wrap these up into “The BOS” or “Balance of System.” The balance of system includes components such as wiring, emergency DC disconnects, system monitoring hardware, the frames or “racking” that holds your panels to the roof and at the right angle, nuts, bolts, roof “flashing” to prevent leaks, and more. (Pure Energies 2014).
Solar Panels
Solar Panels can be used for charging your batteries. They provide a good solution for those that want to be self-sufficient and go on long camping missions through remote areas. They are available in various voltage and power ratings. More than one solar panel can be used in parallel to combine their power output. Solar panels joined in parallel work most efficiently if they are the same. If they are the same, you can design it so that they both generate power at their optimal operating points. Mixing different panels together gives a compromised operating point. It will work but the panels will not operate as efficiently.
Solar Panel Poly or Mono
Silicon solar panels have two basic construction methods – polycrystalline or monocrystalline. There are slight differences between poly and mono cells. Mono are slightly more expensive, require more energy to make, and are slightly more efficient. Poly are slightly cheaper, use less energy to make so are better for the environment, are slightly less efficient but have a slightly better temperature coefficient. That means at elevated temperatures the poly cells become more efficient. The differences are only slight. It is largely irrelevant. A solar panel with good efficiency and good temperature coefficient is to be used whether it is poly or mono, it does not matter.
Inverter unit: This unit converts a DC voltage into AC voltage with the help of the inverter unit.
Automatic Control Unit: This provides all the required control needed to meet up the objective of the whole system.
Battery Unit: This is a secondary cell unit, capable of storing enough DC voltage from either sun or AC main, of which is later converted to AC voltage.
CHPATER FIVE
CONCLUSION, RECOMMENDATION AND LIMITATION
5.1 CONCLUSION
Solar photovoltaic (PV) installers, also known as PV installers, assemble, install, and maintain solar panel systems on rooftops or other structures.
Solar PV panels convert sunlight to electricity, and PV installers put these systems in place. PV installers use a variety of hand and power tools to install PV panels. They often use drills, wrenches, saws, and screwdrivers to connect panels to frames, wires, and support structures.
Many new PV installers begin by performing basic tasks, such as installing support structures and placing PV panels or PV shingles on top of them. Once the panels are in place, more-experienced installers usually perform more-complex duties, such as connecting electrical components.
Depending on the job and state laws, PV installers may connect the solar panels to the electric grid, although electricians sometimes perform this duty. Once the panels are installed, workers check the electrical systems for proper wiring, polarity, and grounding, and they also perform maintenance as needed.
5.2 RECOMMENDATION
Solar panel with inverter would be recommended since it was a noiseless, it does not use fuel and it is environmental friendly. The solar power system was a convenient way of producing an alternative means of power supply to supplement the mains failure. It was advantageous to user who could afford its initial cost of installation. This project was recommended for expansion if the need arose. There would be need to add up more batteries to meet up with the running time and the system load capacity since the system had an adjusted wattage, more load could be added only with addition of more batteries to meet up with the capacity.
For maximum energy gain, solar panels should be inclined at optimal tilt angle and seasonal adjustment of the panel may lead to considerable gain in power obtained from solar energy.
Working on this topic as my project is a good idea and it comes at the right time. I am suggesting that this particular topic should also be given to other students both in higher and lower class.
LIMITATIONS
1. Space: The photovoltaic cells take up a lot space with this we can predict that with proper design can be taken care of.
2. High cost: Currently, the cost of solar system in short term is high for average Nigerian citizen.
3. Low energy efficiency: For now the commercially available have efficiency of 45%.
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of "installation of a solar panel" is also available. Order full work to download. Chapter two of "installation of a solar panel" consists of the literature review. In this chapter all the related work on "installation of a solar panel" was reviewed.
CHAPTER THREE: The complete chapter three of "installation of a solar panel" is available. Order full work to download. Chapter three of "installation of a solar panel" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of "installation of a solar panel" is available. Order full work to download. Chapter four of "installation of a solar panel" consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of "installation of a solar panel" is available. Order full work to download. Chapter five of "installation of a solar panel" consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No
:+2348146561114
Email Address
:engr4project@gmail.com
FOLLOW / VISIT US VIA: