USER'S INSTRUCTIONS: The project work you are about to view is on " solar powered battery charger with reverse current protection". Please, sit back and study the below research material carefully. This project topic ( solar powered battery charger with reverse current protection) have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this " solar powered battery charger with reverse current protection" project research material is to reduce the stress of moving from one school library to another all in the name of searching for " solar powered battery charger with reverse current protection" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their s[tudents to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
SOLAR POWERED BATTERY CHARGER WITH REVERSE CURRENT PROTECTION
BY
---
--/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
DECEMBER,2018
APPROVAL PAGE
This is to certify that the research work, " solar powered battery charger with reverse current protection" by ---, Reg. No. --/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "
solar powered battery charger with reverse current protection" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "
solar powered battery charger with reverse current protection" visible for everyone, then the complete material on "
solar powered battery charger with reverse current protection" is to be ordered for. Happy viewing!!!
This work is on solar mobile charger with reverse current protection. It is designed to meet up with the higher demand of power supply needed to keep our cell phone battery charged and secured.
A solar cell phone battery charger is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It does this by the use of solar panel which is a form of photoelectric cell when exposed to light, can generate and support an electric current without being attached to any external voltage source.
This work is aimed at constructing a solar cell phone battery charger system which receives 12V dc from the solar panel and convert it to the level that can be safe to the cell phone battery (5v), and it has ability to protect our cell phone from reverse current.
TABLE OF CONTENT
Title Page
Approval Page
Dedication
Acknowledgement
Abstract
Table of Content
CHAPTER ONE
1.0 Introduction
1.1 background of the project
1.2 problem statement
1.3 objective of the study
1.4 significance of the study
1.5 scope of the project
1.6 limitation of the project
1.7 methodology
1.8 project organization
CHAPTER TWO
2.0 literature review of solar chargers
2.1 histories of solar cells
2.2 efficiencies of solar panel
2.3 benefits of using solar chargers
2.4 theory of solar cell
CHAPTER THREE
3.0 constructions methodology
3.1 circuit diagram of cell phone charger
3.2 circuit operation
3.3 components description
3.4 circuits’ description
3.5 description of major components used
3.6 solar panel mounting system
CHAPTER FOUR
4.0 Result analysis
4.1 construction procedure and testing
4.2 casing and packaging
4.3 assembling of section
CHAPTER FIVE
5.1 testing of system operation
5.2 problems encountered
5.3 cost analysis
CHAPTER FIVE
6.1 Conclusion
6.2 Recommendation
6.3 Bibliography
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
Given the current energy crisis and increasing need for sustainable energy, we endeavored to create a cost-effective, small-scale electrical generator which could be used to power consumer electronics. Solar energy has proven its worth as an alternative energy source because it is low-impact and emission-free. It has been implemented with much success for power grids with hundreds of acres of enormous solar concentrators. In the small-scale, solar energy has been harvested through the use of photovoltaic (PV) panels and have been used to power anything from an iPod to a residential home. Although PV systems are considered part of the green energy revolution, materials utilized for its construction (like silicon) are extremely dangerous to the environment and much care must be taken to ensure that they are recycled properly. PV cells also only utilize the energy stored in specific wavelengths of light and therefore have an approximate efficiency between 14-19%. Sunlight, however, produces immense amounts of heat which only serves to heat up the surface of the solar cell. Although there are some PV cells that have reached efficiency levels over 40% (world record is 41.6%), they are enormously complex and expensive. Concentrated solar power (CSP) works differently because it focuses solar energy in its entirety rather than absorb it. Ultimately, our group will be designing and producing a Solar Powered Battery [Sam Baldwin, 2011].
Solar cell phone battery charger is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. Solar cell phone chargers use solar panels to charge cell phone batteries. They are an alternative to conventional electrical cell phone chargers and in some cases can be plugged into an electrical outlet [Sam Baldwin, 2011].
There are also public solar chargers for mobile phones which can be installed permanently in public places such as streets, park and squares. Some models of cell phones have a built in solar charger and are commercially available for GSM cell phone models. Solar cell phone chargers come in different shapes and configurations including folding and rotating types.
They also come in the form of straps, with solar cells on the outer surface and a nickel metal hydride battery within. They are capable to charge a mobile device fully within six hours of exposure to the Sun resulting in 40 minutes of talk time.
Solar chargers are also available for other cell phone accessories, such as Bluetooth headsets and speaker phones [Sam Baldwin, 2011].
1.2 PROBLEM STATEMENT
Sometimes there is nothing worse than losing all the charges on your cell phone especially when you are in the middle of something very important. Usually this happens at the most inconvenient time probably when you are using your cell phone to surf the web, in the middle of a browsing or when you are desperate to send an important email or text message. Nonetheless, in this dispensation of global village, there is never a good time! If you are always on the move and you never know whether there is power supply in the place you are moving to, the very last thing you would imagine is to have your cell phone low or even empty on battery. For those who depend largely on their mobile devices, not having enough power for the battery can be a major catastrophe. How else will people reach you or how will you call/text people for business or personal reasons when your cell phone is basically useless as it has gone off on you? All these are problem to our present time, to bring this problem to an end, solar mobile charger was introduced which is a portable device that can supply power using energy from the sun.
1.3 OBJECTIVE OF THE PROJECT
The main aim of this work is to design a device that will help keep mobile phone service by providing the mobile user with a portable personal charging and protective system. The objective are:
- To provide constant electricity supply or those on the go with portable solar power charging systems (with or without battery) to power their mobile phones to enable them make and receive calls.
- To protect the phone from reverse current which can damage the battery.
1.4 SCOPE OF THE PROJECT
The idea of a solar cell phone charger is an excellent one in that it's meant to allow you an option for charging your phone when you're in a remote area or just don't have access to an electrical outlet or car charger.
There are a few on the market today that will do what they say they will do, whereas others are not living up to high expectations
Cell phones can be a real lifesaver in emergency situations. People have come to depend on this technology greatly over the last few years. Technologies such as iPods, MP3 players, and hand-held games have also become quite popular. All of these require fully charged batteries to function at their optimal level. Solar chargers are great for those times you are not close to a power source.
Another benefit of these chargers is that they're free to use since they use the sun's energy. The backup battery stores energy even when it's not actively charging, so you can enjoy more time in between having to charge your cell phone battery via electric.
1.5 SIGNIFICANCE OF THE PROJECT
There are several advantages you enjoy when you use a solar charger instead of a conventional phone charge - the energy savings. Unlike conventional energy resources that produce and consume a lot of waste energy from a solar cell phone charger draws energy from renewable sources and produces no waste. You can phone solar charger to use, you can go anywhere, provided you have access to solar energy.
The main advantage behind the invention of these solar powered cell phone charges is to save large amount of electrical energy. The solar panels of which will help in converting the solar energy from the sun into electrical energy through various reactions.
Other advantages of solar powered cell phone charges reside in the fact that they allow you to access power outside the national grid. You can charge yours phones even while traveling without depending on electricity. This property has made it possible to make use of these cell phone chargers at any possible place.
The last one is these solar powered cell phone charges are eco/environment-friendly. They don't produce harmful waste, and can be used anytime and anywhere that there is daylight.
1.6 LIMITATION OF THE PROJECT
There are some disadvantages to cell phone chargers powered by the sun. The most obvious of course is that if it's a cloudy or overcast day, your solar powered charger isn't going to be able to garner the energy it needs from the sun in order to function. Usually, it needs direct sun in order to store enough in the battery to work efficiently.
Another disadvantage to the current solar phone chargers is that the amount of power they are capable of generating isn't always enough to keep up with the amount of power required by today's highly functional cell phones.
Some analysts say that in order to meet and exceed the power needs of most cell phones, the solar cell phone charger will have to be larger in order to capture more of the sun's energy more quickly. However, this poses a problem when it comes to the transport and convenience of the charger.
Another drawback is that solar mobile phone chargers are not typically able to generate enough power for a full charge.
1.7 BUILDING BLOCK OF A SOLAR PANEL
Assemblies of photovoltaic cells are used to make solar modules which generate electrical power from sunlight. Multiple cells in an integrated group, all oriented in one plane, constitute a solar photovoltaic panel or "solar photovoltaic module," as distinguished from a "solar thermal module" or "solar hot water panel." The electrical energy generated from solar modules, referred to as solar power, is an example of solar energy. A group of connected solar modules (such as prior to installation on a pole-mounted tracker system) is called an "array."
1.8 METHODOLOGY
To achieve the aim and objectives of this work, the following are the steps involved:
- Study of the previous work on the project so as to improve it efficiency.
- Draw a block diagram.
- Test for continuity of components and devices,
- Design of the system was carried out.
- Studying of various component used in circuit.
- Construct of the system circuit.
- Finally, the whole device was cased and final test was carried out.
1.9 PROJECT ORGANISATION
The work is organized as follows: chapter one discuses the introductory part of the work, chapter two presents the literature review of the study, chapter three describes the methods applied, chapter four discusses the results of the work, chapter five summarizes the research outcomes and the recommendations.CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of " solar powered battery charger with reverse current protection" is also available. Order full work to download. Chapter two of " solar powered battery charger with reverse current protection" consists of the literature review. In this chapter all the related work on " solar powered battery charger with reverse current protection" was reviewed.
CHAPTER THREE: The complete chapter three of " solar powered battery charger with reverse current protection" is available. Order full work to download. Chapter three of " solar powered battery charger with reverse current protection" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of " solar powered battery charger with reverse current protection" is available. Order full work to download. Chapter four of " solar powered battery charger with reverse current protection" consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of design and construction of a " solar powered battery charger with reverse current protection" is available. Order full work to download. Chapter five of " solar powered battery charger with reverse current protection" consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No :+2348146561114
Email Address :engr4project@gmail.com
FOLLOW / VISIT US VIA: