+234 8146561114 (MTN) or
+2347015391124 (AIRTEL)

 

PROJECT


BY
 
------------
EE/2017/167
 
SUBMITTED TO


DEPARTMENT OF ELECTRICAL ELECTRONIC ENGINEERING FACULTY OF ENGINEERING CARITAS UNIVERSITY, AMORJI-NIKE, ENUGU.

 
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF ENGINEERING (B.ENG)

 



APPROVAL PAGE

This project has been read and approved by the undersigned as with the requirement at the department of Electrical Electronic Engineering of Caritas University Amorji Nike Enugu for the award of  Bachelor of Engineering (B.Eng.) in Electrical Electronic Engineering.

----------------------------                                             --------------------------
    Engr. Ejimorfor                                                                   Date
(Project supervisor)                                            
 
---------------------------                                               --------------------------
      
    Engr. Ejimofor                                                                      Date
(Head of Department)
 
 
------------------------------                                            ------------------------
      
External Supervisor                                                             Date                                                                    

 


 

DECLARATION

I declare that this project material is an original work done by me under the supervision of Engr. Ejimorfor, department of electrical electronic engineering faculty of engineering caritas university, amorji-nike, enugu

 


DEDICATION


This project is dedicated to Almighty God and to my parents Engr. & Mrs. Chukwu A. Orioha and to my beloved brothers and sisters whose ever loving kindness and support has seen me through my years of studies.


ACKNOWLEDGEMENT


I wish to express my immense gratitude to God Almighty for his mercy, guidance and protection towards me for seeing me through the rigors of this work. I am greatly indebted to my supervisor Engr. Ejimofor for his kind gesture and whose critics lead to the achievement of this work. I also will remain grateful to the tremendous contribution of my lecturers Engr. Ojobor (the Dean of Engineering Faculty), Engr. Ejimofor (Head of Electrical Electronic Engineering Department), Engr. Mbah, Engr. Ochi, and all the staff of Electrical Electronic Engineering both academic and non academic staff for their intellectual upbringing. My special appreciation goes to my loving parents Engr. & Mrs. Chukwu A. Orioha, my grandparent, my uncles and aunties, my brothers and sisters whose moral and financial support cannot be over emphasized. Also my sincere gratitude and special regards to my friends too many to mention whose encouragement also lead to the success of this work.


 

ABSTRACT

This project is titled design and construction of an automatic fire alarm. Fire alarm is an electronics device that is stored in a building to detect the presence of fire accident. An automatic fire alarm system is designed to detect the unwanted presence of fire by monitoring environmental changes associated with combustion. In general, a fire alarm system is classified as either automatically actuated, manually actuated, or both. Automatic fire alarm systems are intended to notify the building occupants to evacuate in the event of a fire or other emergency, report the event to an off-premises location in order to summon emergency services, and to prepare the structure and associated systems to control the spread of fire and smoke. This fire alarm system composes of 555 timer IC and thermistor - which works as a smoke sensor. The aim of this project is to design and construct a fire alarm for a building that will detect the presence of fire accident in a building.

 

TABLE OF CONTENTS
COVER PAGE
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
CHAPTER ONE
1.0      INTRODUCTION
1.1      BACKGROUND OF THE PROJECT

    1. AIM OF THE PROJECT
    2. OBJECTIVE OF THE PROJECT
    3. PURPOSE OF THE PROJECT
    4. SIGNIFICANCE OF THE PROJECT
    5. APPLICATION OF THE PROJECT
    6. LIMITATION OF THE PROJECT
    7. DESCRIPTION OF SMOKE DETECTOR
    8. TYPES OF FIRE ALARM SYSTEM
    9. PROJECT ORGANISATION

CHAPTER TWO
LITERATURE REVIEW

    1. INTRODUCTION
    2. REVIEW OF RELATED STUDIES
    3. HISTORICAL BACKGROUND OF THE PROJECT
    4. REVIEW OF SMOKE DETECTOR
    5. REVIEW OF TYPES OF FIRE ALARM SYSTEM
    6. REVIEW OF FIRE ALARM DESIGN
    7. REVIEW OF FIRE ALARM INITIATING DEVICES
    8. FIRE ALARM NOTIFICATION APPLIANCES
    9. PARTS OF FIRE ALARM

CHAPTER THREE
3.0     CONSTRUCTION METHODOLOGY
3.1      BLOCK DIAGRAM OF THE SYSTEM
3.2      CIRCUIT DIAGRAM
3.3      CIRCUIT OPERATION AND DESCRIPTION
3.4      POWER SUPPLY UNIT
3.5      PARTS LIST
3.6      DESCRIPTION OF MAJOR COMPONENTS USED
CHAPTER FOUR
4.0      TESTING AND RESULTS

    1. CONSTRUCTION PROCEDURE AND TESTING
    2. INSTALLATION OF THE COMPLET DESIGN 
    3. ASSEMBLING OF SECTIONS
    4. TESTING OF SYSTEM OPERATION

CHAPTER FIVE

    1. CONCLUSION
    2. RECOMMENDATION
    3. REFERENCES

 

CHAPTER ONE
1.0                                                      INTRODUCTION
In modern society, it is impossible to imagine house or building without a fire accident detector. Modern houses require a continuous installation of fire detector. Not only industry, but also in the household. Take the case of a duplex that experience a fire accident without a detector that means everything in that building will get burnt even human beings. But in a case whereby fire alarm is installed that means everyone in that building will be alerted and also fire security bodies will also be informed for quick security action. The same thing can also happen to our offices and industries. In order to notify residence of any building in the presence of fire accident, a fire alarm system is used.
An automatic fire alarm system is designed to detect the unwanted presence of fire by monitoring environmental changes associated with combustion. In general, a fire alarm system is classified as either automatically actuated, manually actuated, or both. Automatic fire alarm systems are intended to notify the building occupants to evacuate in the event of a fire or other emergency, report the event to an off-premises location in order to summon emergency services, and to prepare the structure and associated systems to control the spread of fire and smoke.


1.1                           OBJECTIVE OF THE PROJECT
The objective of this work is to construct a device that will detect the unwanted presence of fire by monitoring environmental changes associated with combustion.


1.2                                SIGNIFICANCE OF FIRE ALRM SYSTEM
The primary advantage of a home fire alarm system is increased reliability and the ability to place alarms and bells exactly where needed. However, the reason most people have them is that they wanted a burglar alarm system and the cost of adding fire alarm features to a residential burglary system is relatively small.
Another advantage is that they are the only way to obtain remote monitoring services. This becomes important in cases where family members may not be capable of escaping from a fire without assistance. For example, if you have an older or physically impaired person in your home and a fire started when no one was home to assist that person, alarms alone might not be enough to assure their safety.
A feature of most monitoring services is the ability to keep special information on the residence which comes up on the computer screen whenever an alarm is received from that home. Thus, if there is a disabled person in the home who needs special assistance this fact will be known to the operator and can be passed along to the fire department when they are called.


1.3                                PURPOSE OF THE STUDY
The purpose of this work is to build a circuit that detects the fire and activates the Siren Sound or Buzzer. This device is very important devices to detect fire in the right time and prevent any damage to people or property.


1.4                         APPLICATION OF THE PROJECT
Fire alarms are prime necessities in modern buildings and architectures, especially in banks, data centers and gas stations.


1.5                                              SCOPE OF THE PROJECT
They detects the fire in ambiance at very early stage by sensing smoke or/and heat and raise an alarm which warns people about the fire and furnish sufficient time to take preventive measures. It not only prevents a big losses caused by deadly fire but sometimes proves to be life savers. The major components of this device is 555 Timer IC and thermistor which is the sensor -  which will sense the fire (temperature rise in surrounding), and trigger the alarm.


1.6                               PARTS OF FIRE ALARM
Fire alarm composed of the following parts:

  1. Primary Power supply: Commonly the non-switched 240 Volt Alternating Current source supplied from a commercial power utility. In non-residential applications, a branch circuit is dedicated to the fire alarm system and its constituents. "Dedicated branch circuits" should not be confused with "Individual branch circuits" which supply energy to a single appliance.
  2. Secondary (backup) Power supplies: This component, commonly consisting of sealed lead-acid storage batteries or other emergency sources including generators, is used to supply energy in the event of a primary power failure.
  3. Initiating Devices: This component acts as an input to the fire alarm control unit and are either manually or automatically actuated. Examples would be devices pull stations, heat detectors, or smoke detectors. Heat and smoke detectors have different categories of both kinds.

1.6                                              SCOPE OF THE PROJECT
They detects the fire in ambiance at very early stage by sensing heat and raise an alarm which warns people about the fire and furnish sufficient time to take preventive measures. It not only prevents a big losses caused by deadly fire but sometimes proves to be life savers. The major components of this device is 555 Timer IC and thermistor which is the sensor - which will sense the fire (temperature rise in surrounding), and trigger the alarm.

1.7                                         METHODOLOGY
To achieve the aim and objectives of this work, the following are the steps involved:

  1. Study of the previous work on the project so as to improve it efficiency.
  2. Draw a block diagram.
  3. Test for continuity of components and devices,
  4. Design and calculation for the device was carried out.
  5. Studying of various component used in circuit.
  6. Construction of the circuit was carried out.
  7. Finally, the whole device was cased and final test was carried out.

1.8 DESCRIPTION OF SMOKE DETECTOR
A smoke detector is a device that senses the presence of smoke in a building and warns the occupants, enabling them to escape a fire before succumbing to smoke inhalation or burns. Equipping a home with at least one smoke detector cuts in half the chances that the residents will die in a fire. In 1992 the readers of R&D Magazine selected home smoke alarms as one of the "30 Products that Changed Our Lives." Smoke detectors became widely available and affordable in the early 1970s. Prior to that date, fatalities from fires in the home averaged 10,000 per year, but by the early 1990s the figure dropped to fewer than 6,000 per year (Sowah et al., 2016).
Two basic types of smoke detectors are currently manufactured for residential use. The photoelectric smoke detector uses an optical beam to search for smoke. When smoke particles cloud the beam, a photoelectric cell senses the decrease in light intensity and triggers an alarm. This type of detector reacts most quickly to smoldering fires that release relatively large amounts of smoke.
The second type of smoke detector, known as an ionization chamber smoke detector (ICSD), is quicker at sensing flaming fires that produce little smoke. It employs a radioactive material to ionize the air in a sensing chamber; the presence of smoke affects the flow of the ions between a pair of electrodes, which triggers the alarm. Between 80 and 90% of the smoke detectors in American homes are of this type. Although most residential models are self-contained units that operate on a 9-volt battery, construction codes in some parts of the country now require installations in new homes to be connected to the house wiring, with a battery backup in case of a power failure (Sowah et al., 2016).
The typical ICSD radiation source emits alpha particles that strip electrons from the air molecules, creating positive oxygen and nitrogen ions. In the process, the electrons attach themselves to other air molecules, forming negative oxygen and nitrogen ions. Two oppositely charged electrodes within the sensing chamber attract the positive and negative ions, setting up a small flow of current in the air space between the electrodes. When smoke particles enter the chamber, they attract some of the ions, disrupting the current flow. A similar reference chamber is constructed so that no smoke particles can enter. The smoke detector constantly compares the current flow in the sensing chamber to the flow in the reference chamber; if a significant difference develops, an alarm is triggered (Sowah et al., 2016).

1.9                           TYPES OF FIRE ALARM SYSTEM
All Fire Alarm Systems essentially operate on the same principle. If a detector detects smoke or heat or someone operates a break glass unit (manual break point), then alarm sounders operate to warn others in the building that there may be a fire and to evacuate. It may also incorporate remote signaling equipment which would alert the fire brigade via a central station.
Fire Alarm Systems can be broken down into four categories, Conventional, Addressable, Analogue Addressable and Wireless systems.
Conventional Fire Alarm System
In a Conventional Fire Alarm System, a number of call points and detectors are wired to the Fire Alarm Control Panel in Zones. A Zone is a circuit and typically one would wire a circuit per floor or fire compartment. The Fire Alarm Control Panel has a number of Zone Lamps. The reason for having Zones is to give a rough idea as to where a fire has occurred. This is important for the fire brigade and of course for the building management. The accuracy of knowing where a fire has started is controlled by the number of Zones a Control Panel has and the number of circuits that have been wired within the building. The Control Panel is wired to a minimum of two sounder circuits which could contain bells, electronic sounders or other audible devices. Each circuit has an end of line device which is used for monitoring purposes.
Addressable Systems
The detection principle of an Addressable System is similar to a Conventional System except that the Control Panel can determine exactly which detector or call point has initiated the alarm. The detection circuit is wired as a loop and up to 99 devices may be connected to each loop. The detectors are essentially Conventional Detectors, with an address built in. The address in each detector is set by dil switches and the Control Panel is programmed to display the information required when that particular detector is operated. Additional Field Devices are available which may be wired to the loop for detection only i.e. it is possible to detect a normally open contact closing such as sprinkler flow switch, or a normally closed contact opening. Sounders are wired in a minimum of two sounder circuits exactly as a Conventional System. Loop Isolation Modules are available for fitting on to the detection loop/loops such that the loop is sectioned in order to ensure that a short circuit or one fault will only cause the loss of a minimal part of the system.
Analogue Addressable Fire Alarm Systems
Analogue Addressable Fire Alarm Systems are often known as Intelligent Fire Alarm Systems. There are several different types of Analogue Systems available which are determined by the type of protocol which they use. The bulk of standard Analogue Detectors available are fairly stupid as the Detectors can only give output signals representing the value of detected phenomena. It is left up to the Control Unit to decide whether there is a fire, fault, pre-alarm or other. With a true Intelligent Analogue System each detector effectively incorporates its own computer which evaluates the environment around it, and communicates to the Control Panel whether there is a fire, fault or the detector head needs cleaning. Essentially Analogue Systems are far more complex and incorporate far more facilities than Conventional or Addressable Systems (Sowah et al., 2016). Their primary purpose is to help prevent the occurrence of false alarms. With the Analogue Addressable System, up to 127 input devices i.e.: Smoke Detectors, Call Points, Heat Detectors, Contact Monitors and other interface devices may be wired to each detection loop. In addition to the 127 Input Devices, up to 32 Output Devices such as Loop Sounders, Relay Modules and Sounder Modules may be connected. Analogue Systems are available in 2, 4 and 8 loop versions which means large premises can be monitored from one single panel. Isolator units should be connected between sections of detectors as described for Addressable Systems.
Wireless Fire Alarm System

Wireless fire alarm systems are an effective alternative to traditional wired fire alarm systems for all applications. They utilise secure, licence-free radio communications to interconnect the sensors and devices (smoke detectors, call-points, etc.) with the controllers. It is a simple concept, which provides many unique benefits and is a full analogue addressable fire detection system without the need for cable.

1.8                                                         PROJECT ORGANISATION
The work is organized as follows: chapter one discuss the introductory part of the work,   chapter two presents the literature review of the study,  chapter three describes the methods applied,  chapter four discusses the results of the work, chapter five summarizes the research outcomes and the recommendations.

CHAPTER FIVE
5.1                                          CONCLUSION
In summary, there are several options for a building's fire detection and alarm system. The ultimate system type, and selected components, will be dependent upon the building construction and value, its use or uses, the type of occupants, mandated standards, content value, and mission sensitivity. Contacting a fire engineer or other appropriate professional who understands fire problems and the different alarm and detection options is usually a preferred first step to find the best system.

5.2                                                  RECOMMENDATIONS
Like every other work, this work is not without its limitations and can be improved upon. On this basis recommendations have been made for improvement.
To improve this work, it is recommended that multiple sensors be added to the device for monitoring more than one place.

 

CLICK HERE FOR MORE RELATED TOPICS/MATERIAL

Do you have interest on this topic? If your answer is yes. We have made the format of the preliminary pages available for you but you can also view the abstract and chapter one for free, then order for the rest of the material (write-up). To view the abstract and chapter one, send us a request in this format below:

This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.

All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.

To "DOWNLOAD" the complete material on this particular topic above click "HERE"

Do you want our Bank Accounts? please click HERE

To view other related topics click HERE

To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research for your new topic? if yes, click "HERE"

Do you have any question concerning our post/services? click HERE for answers to your questions

You can also visit our facebook Page at fb.me/hyclas to view more our related construction (or design) pics


For more information contact us through Any of the following means:

Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]

Email address :engr4project@gmail.com

Watsapp No :+2348146561114

To View Our Design Pix: You can also visit our facebook Page at fb.me/hyclas for our design photos/pics.



IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.