USER'S INSTRUCTIONS: The project work you are about to view is on "design and construction a 3-phase automatic voltage stabilizer". Please, sit back and study the below research material carefully. This project topic (design and construction a 3-phase automatic voltage stabilizer) have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "AA" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "design and construction a 3-phase automatic voltage stabilizer" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "design and construction a 3-phase automatic voltage stabilizer" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "design and construction a 3-phase automatic voltage stabilizer" visible for everyone, then the complete material on "design and construction a 3-phase automatic voltage stabilizer" is to be ordered for. Happy viewing!!!
This project is titled the design and construction of a three phase Voltage Stabilizer. It is designed to meet up with the AC voltage safety, stability and accuracy demand in industries and in homes.
Three phase automatic Voltage stabilizers are useful in devices or load that have three phase such as computer Power supplies, alternators and central power station generator plants, voltage regulators control the output of the plant. In an electric power distribution system, three phase voltage regulators may be installed at a substation or along distribution lines so that all customers receive steady voltage independent of how much power is drawn from the line.
Three phase stabilizer is more versatile and is the most commonly used type for use with three phase loads. This basically consists of 3 single phase units of 1/3rd capacity each. In this type, the output voltage on all three phases is equal even if the input voltage and the loads connected on the three phases are entirely different (unbalanced).
An AC Automatic voltagestabilizer is designed to automatically maintain a constant AC voltage level. An AC Voltage Stabilizer may be a simple "feed-forward" design or may include negative feedback control loops. It makes use an electromechanical mechanism, and other electronic components. It is used to regulate three different AC voltages.
The aim of this project is to design a three phase stabilizer which can stabilize an AC input voltage of 160-250V to give three output AC output voltages of 220V at 50Hz automatically. The automatic feature can be achieved by the electronics devices used such voltage comparator IC, electro-magnetic device (relay), three phase transformer and other electronics devices.
TABLE OF CONTENTS
TITLE PAGE
CERTIFICATION
DEDICATION
ACKNOWELDGEMENT
TABLE OF CONTENTS
LIST OF TABLE
ABSTRACT
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE PROJECT
1.2 AIM/OBJECTIVE OF THE PROJECT
1.3 SIGNIFICANCE OF THE PROJECT
1.4 SCOPE OF THE PROJECT
1.5 LIMITATION OF THE PROJECT
1.6 PROBLEM STATEMENT
1.7 APPLICATION OF THE PROJECT
1.8 DEFINITIONS OF TERMS
1.9 METHODOLOGY
1.10 PROJECT ORGANIZATION
CHAPTER TWO
2.0 LITERATURE REVIEW
- HISTORY OF THE PROJECT
- THE POWER SUPPLY
- THEORY OF TRANSFORMER
- OPERATION OF THE TRANSFORMER
- VOLTAGE TRANSFORMATION RATION
- TRANSFORMER LOSSES
CHAPTER THREE
3.0 CONSTRUCTION OF THE SYSTEM
- SYSTEM CIRCUIT DIAGRAM
- CIRCUIT OPERATION
- MODE OF OPERATION
- CONTRUCTION PROCEDURE
- DESIGN FO THE TRANSFORMER PROPER
- SUMMARY OF THE SPECIFICATION OF TRANSISFORMER
- SHORT CIRCUIT TEST
- TESTING OF THE TRANSFORMER
- OPEN CIRCUIT TEST
- DESCRIPTION OF TRANSFORMER USED.
CHAPTER FOUR
4.0 RESULT ANALYSIS
- TESTING ANALYSIS
- SYSTEM POWER-UP
- INSTALLATION OF THE SYSTEM
- UNPACKING AND INSPECTION
- TROUBLESHOOTING METHOD OF THREE PHASE AUTOMATIC VOLTAGE REGULATOR.
- MAINTENANCE OF THE SYSTEM
CHAPTER FIVE
- SUMMARY
- CONCLUSION
- RECOMMENDATION
- REFERENCES
CHAPTER ONE
1.0 INTRODUCTION
There are many fundamental different types of stabilizers in use some of which are electron mechanically tap changer, solid state tap changer etc. voltage, stabilizer came into being not by normal design and plain, but as a means of solving electrical “Crisis” situation. This crisis situation does rarely occur in developed countries of the world such as Britain, American, Germany etc, why?
Their system of generation, transmission and distribution of electricity is such that a devoid of variation of fluctuation in the supplied voltage. Now, by the definition given by K.G Jackson and R. Feinberg, a voltage stabilizer is a piece device incorporated in a circuit to maintain a constant output voltage from a poorly generated power supply. A voltage stabilizer like any other piece of equipment is a combination of many electrical and like any other piece of equipment is a combination of many electrical and electronic and circuit with the aim of getting the assemble to perform a specified desired task or the function.
Referring the topic at hand, which is three phase automatic three phase voltage stabilizer which is the type of automatic voltage stabilizer with three phase output. This three phase AVR is fitted with isolation transformers in a delta-star configuration. This provides and clean, isolated supply to the load with a ‘new’ neutral connection. The AVR is made up from three identical single phase regulator units. Each of these monitors its own output voltage and adjusts for variations in mains supply voltage so as to maintain an output voltage within close limits.
When the AVS function is fitted, the outputs from the regulator are connected through a contactor to the load. The contactor is controlled by a three phase Automatic Voltage Switcher PCB which monitors the AVR outputs. This connects the load only when all the phase voltages are within acceptable limits. There is a delay function in the AVS to prevent frequent switching of the load.
A change-over switch is provided to by-pass the AVR in the event of needing to perform maintenance on the AVR.
1.2 AIM AND OBJECTIVE OF THE PROJECT
Most electrical appliance this day highly sophisticated to the entreated that cases of intermitted or regular power outages, under voltages or over voltages are not tolerate in them. The initial outlay and the cost or repair (in case of damage) are so economical that is means of maintain steady or regulated a.c power supply to these expensive appliance/equipment must sought for.
The cost of purchasing some already made imported voltage stabilizer is enormous. Not readily available in our local markets while importing them requires high foreign exchange, the sown tunes is also much before, there is need to embark on this project work the design and construction automatic voltage stabilizer any form of voltage fluctuating (under voltage or over voltage) from the NEPA mains supply to domestic and industrial consumer premise. It is also one of the objectives of this project work that cost comparison between the imported or factory assembled voltage stabilizer e.g SORTEX OR BINATONE products and a locally fabricated voltage stabilizer be embarked on and that work be done on this project in order to finally produce a device that would perform optimally and also relatively cheaper.
1.2 TRANSFORMER CONFIGURATION
These AVRs are fitted with isolating transformers, one per phase. These provide a high degree of isolation from input to output. They also greatly attenuate common mode noise from the supply and prevent it reaching the load.
The primaries are each nominally 415V rated and are connected in a delta
configuration. Indoor 50A and outdoor 50A AVRs, the primaries are made up of two coils connected in parallel. The 12A and 20A transformers have single coils.
The secondary voltages are nominally 230V rated and are connected in a star configuration so as to generate a new neutral point. The secondary are in fact made of two coils each connected in parallel.
A further advantage of the delta input configuration is that an incoming neutral connection is not required from the supply. Often neutral supply connection are poor or missing and this can cause damage to loads and regulators due to high phase to neutral voltages that result. 1.3 SIGNIFICANCE OF THE PROJECT
The Automatic voltage stabilizer is a voltage stabilizer planned to mechanically sustain a constant voltage level. It is very device to maintain a constant voltage level. It can also use electromechanical components. It can be used majorly to regulate one or more DC or AC depending on the design. Therefore, the functions of this equipment are very wide and can be used majorly for various purposes. Electronic voltage stabilizer can be used majorly for various purposes. It has various functions like it can be used mainly for stabilizing the DC voltages that can be used by the processor and its main parts. In central power station generator plants and automobile alternators, voltage stabilizer controls the output of the plant. In this distribution system, it may be installed at along distribution lines so that all clients recognize steady voltage self-regulating of how much power is drawn from the line. There are many functions of operating the AC depending upon the design. It is very good option to maintain the constant voltage level. Automatic voltage stabilizer is a superb invention of science, which is an electric device designed to authorize a constant voltage in a settable level. It is very helpful to maintain the preferred voltage for the generators within particular limits. The main working of it depends upon the laws of electromechanical physics. It consists of numerous vigorous and unreceptive electrical parts like thermostats, adopters and diodes. Apart from this, there are many reliable Automotive Suppliers in India that produce many kinds of equipments like generator, regulator and other major parts. They are well known for various kinds of functions and various specifications. They not only produce higher quality products, but also they will provide some additional benefits with the parts of these equipments. Auto Voltage stabilizer Generator is the most important part for great amplifier to work. Its types are many, but they are highly in functionality and better performance. They are well equipped with self functioning controls and starts up functions which make them very easy and useful to handle easily and completely. They have different sizes, shapes and colors. There are also automatic stabilizers which are so small that they can be easily places on a small printed circuit board. They are very easy and portable to handle. They may cover a higher volume of small house sometimes. Therefore, there is a wide variety in the automatic voltage stabilizer each has its own specifications.
1.4 THE SCOPE OF THE PROJECT
The design and construction of an Automatic Voltage stabilizer is the project we are construction. We are working on this machine because we have some idea on how this machine can be constructed and also on how it works. We are also doing this because we want to learn more about it.
As we have mentioned earlier, this device is a protective device that protects our electrical and electronic appliances out of current and voltage fluctuation. This is how it works. When this system is plugged into the socket or supply, it will receive a minimum voltage of 100v and filter the current and voltage thereby brings out suitable voltage output to be used by the devices in it.
So, we are building or constructing this device to reduce risk and damages the fluctuation of current / voltage caused by power fluctuations.
1.5 LIMITATION OF THE PROJECT
If the input voltage or frequency exceeds programmable minimum or maximum set points for a programmable time period (factory set for 10 seconds), the AVS shall electronically shut off. When electrical parameters are back within acceptable limits for a programmable time period (factory set for 60 seconds), the AVS shall automatically restart to provide conditioned power to the load. If the input parameters are within acceptable limits, but the output voltage is outside of acceptable programmed limits, the AVS shall electronically shut off and require a manual restart.
The AVS shall be capable of operating at 100% rated load capacity continuously, 200% rated load for 10 seconds, 500% rated load for 1 second and 1000% rated load for 1 cycle. Operating efficiency shall be a minimum of 96%, typical at full load.
Transformer winding shall be continuous copper with electrostatic tripled shielding and K-13 rated for the purpose of handling harmonic currents.
Response Time: The AVS shall respond to any line voltage variation in 1/2 cycle while operating linear or non-linear loads, with a load power factor of 0.60 of unity. Peak detection of the voltage sine wave shall not be permitted to avoid inaccurate tap switching due to input voltage distortion.
Operating Frequency: The AVS shall be capable of operating at +10% to -15% of the nominal frequency, 50Hz or 60Hz.
Rating: this device shall be rated at 1kVA.
Access Requirements: The AVS shall have removable panels on the front, rear and sides as required for ease of maintenance and/or repair.
Metering: An input meter is provided to display line voltages
Ventilation: The AVS isolation transformer shall be designed for convection cooling. If fan cooling is required for the solid state electronic switching devices.
1.6 PURPOSE OF THEPROJECT
The main purpose of this study is to maintain constant voltage and power line conditioning to the equipment load under a wide variety of conditions, even when the utility input voltage, frequency or system load vary widely.
1.7 PROBLEM STATEMENT
The rate at which our appliances gets burnt is higher most especially appliances without transformer such as our cell phone chargers and lanterns. And this problem is usually caused by either over voltage or under voltage. Due to this problems, a voltage stabilizer was designed which regulates under and over voltages to normal 220vac. An automatic voltage regulator regulates the AC voltage and keeps from lower or higher to normal. It protects any electronic device connected to it from getting damaged.
1.8 SIGNIFICANCE OF THE PROJECT
An automatic voltage regulator does the following functions:
- It controls the voltage of the system and has the operation of the machine nearer to the steady state stability.
- It divides the reactive load between the alternators operating in parallel.
- The automatic voltage regulators reduce the over-voltages which occur because of the sudden loss of load on the system.
- It increases the excitation of the system under fault conditions so that the maximum synchronizing power exists at the time of clearance of the fault.
1.9 APPLICATIONS OF THE PROJECT
- Voltage regulator is used to automatically adjust the output voltage of the power supply circuit or power supply equipment
- It can be widely used in places require stable power supply voltage, such as industrial and mining enterprise, oil, railways, construction sites, schools, hospitals, telecommunications, hospitals, research and other department as of computer, precision machine tools, computer tomography(CT),precision instruments, test equipment, elevator lighting, imported equipment and production lines and more.
HV: High Voltage. Any electricity supply in excess of 650volts. Primarily used for the transmission of electricity over long distances.
Kva: Kilo volt amps. A measurement of the electrical ‘pressure’ and ‘quantity’ to a building.
Loads: The equipment that is using the electricity supplied to a building.
Long power cut: Failure of the mains power external to your building, in excess of 30 minutes to 24 hours.
LV: Low Voltage. Electricity supply from 110volts to 650 volts.
Power cut: A failure of the mains electricity by factors outside of your premises.
Prime rating: the rating given to a generator when it is used in lieu of mains power at a varying load. There is normally an overload allowed at this rating of 10% above the prime rating for 1 hour in 12.
Single phase power: The electricity produced from one phase of a three phase winding or from a dedicated singles phase winding.
Standby power: Maximum power a generator will give normally restricted to 1 hour in 12 for standby purposes only.
Winding: The copper wire that produces electricity when it passes through a magnetic field.
Watts: The total energy supplied by a circuit.
Surge: Overvoltage supply of electricity causing damage in sensitive equipment (opposite of Brown out).
Surge Suppression: Electronic equipment designed to restrain surges such as lightning strikes.
AVRs. Automatic voltage regulators. The electronic device which controls the output voltage of an alternator.
Base load rating. The rating given to a generator when it is used for continuous supply of electricity at a given load 24/7.
Black out. A national or wide area power failure, causing major disruption. For example.
Brown out. A drop in the mains voltage (not a total failure) that can cause degradation of lighting and electronic equipment.
1.10 METHODOLOGY
In building this project, to achieve the aim and objectives of this work, the following are the steps involved:
- Study of the previous work on the project so as to improve it efficiency.
- Draw a block diagram.
- Design and calculation for automatic voltage stabilizer.
- Studying of various component of automatic voltages stabilizer circuit.
- Construct a automatic voltages stabilizer circuit.
1.11 PROJECT WORK ORGANISATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this works is on the introduction to an automatic voltage regulator. In this chapter, the background, significance, objective, aim, scope, limitation and problem, definition of terms of an automatic voltage regulator were discussed.
Chapter two is on literature review of an automatic voltage regulator. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, discussion, recommendation and references.
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of "design and construction a 3-phase automatic voltage stabilizer" is also available. Order full work to download. Chapter two of "design and construction a 3-phase automatic voltage stabilizer" consists of the literature review. In this chapter all the related works on "design and construction a 3-phase automatic voltage stabilizer" were reviewed.
CHAPTER THREE: The complete chapter three of "design and construction a 3-phase automatic voltage stabilizer" is available. Order full work to download. Chapter three of "design and construction a 3-phase automatic voltage stabilizer" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of "design and construction a 3-phase automatic voltage stabilizer" is available. Order full work to download. Chapter four of "design and construction a 3-phase automatic voltage stabilizer" consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of design and construction of a "design and construction a 3-phase automatic voltage stabilizer" is available. Order full work to download. Chapter five of "design and construction a 3-phase automatic voltage stabilizer" consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com