+234 8146561114 (MTN) or
+2347015391124 (AIRTEL)
DESIGN AND CONSTRUCTION OF A SINGLE PHASE  AUTOMATIC CHANGEOVER SWITCH WITH PHASE SELECTOR

 

ABSTRACT

The Changeover Switch is a device used to switch off a power supply and subsequently switch on another power supply
This project work is on the design and construction of an automatic changeover with phase selector. It provides a means switching from generator set to PHCN on power resumption and at the same time switching from one phase of AC mains to another in the case of failure in the existing phase; This project has been improved on the existing types of electromechanical device that has being in use over the years.
Hence this has been achieved by the use of operational amplifier, timing circuit and high current relay switches and it is powered by 12V dc power supply.
The aim of this work is to design and construct an Auto changeover introduces an automatic solution to overcome power fluctuation/phase interruption by selecting next most healthy available phase to feed the equipment without any notice of power outage

TABLE OF CONTENTS

 TITLE PAGE

APPROVAL PAGE
DEDICATION
ACKNOWELDGEMENT
ABSTRCT
TABLE OF CONTENT

CHAPTER ONE

    • INTRODUCTION
    • BACKGROUND OF THE PROJECT
    • AIM/OBJECTIVE OF THE PROJECT
    • SIGNIFICANCE OF THE PROJECT
    • PURPOSE OF THE PROJECT
    • STATEMENT OF PPROBLEM
    • LIMITATION OF THE PROJECT
    • APPLICATION OF THE PROJECT
    • DEFINITION OF TERMS
    • PROJECT ORGANISATION

CHAPTER TWO

LITERATURE REVIEW
2.0      LITERATURE REVIEW
2.1      REVIEW OF ELECTRICAL PHASES
2.2      REVIEW OF THREE-PHASE ELECTRIC POWER
2.3      REVIEW OF CAUSES OF POWER FAILURES
2.4       POWER SUPPLY RELIABILITY
2.5 EFFECT OF POWER FAILURE ON ELECTRICAL APPLIANCES     

CHAPTER THREE

3.0      CONSTRUCTION METHODOLOGY
3.1      BLOCK DIAGRAM OF THE SYSTEM
3.2      CIRCUIT DIAGRAM
3.3      CIRCUIT DESCRIPTION
3.4      SYSTEM OPERATION
3.5      COMPONENTS LIST
3.6     DESCRIPTION OF MAJOR COMPONENTS USED

CHAPTER FOUR

4.0       RESULT ANALYSIS

4.1      CONSTRUCTION PROCEDURE AND TESTING
4.2      ASSEMBLING OF SECTIONS
4.3      CONSRUCTION OF THE CASING
4.4      ECONOMIC OF THE PROJECT
4.5     PROJECT VIABILITY
4.6      PROJECT RELIABILITY
4.7      PROJECT MAINTAINABILITY
4.8      PROJECT EVALUATION
4.9     TESTING, TROUBLESHOOTING AND REMEDY

CHAPTER FIVE

    • CONCLUSIONS
    • RECOMMENDATION

5.3     REFERENCES

 


CHAPTER ONE
1.1                                                        INTRODUCTION
The Changeover Switch is a device used to switch off a power supply and subsequently switch on another power supply. Basically it is aimed at switching on a more convenient power supply to the load.
Since it switches on power to the load, precautions has to be taken while choosing the type of Change Over Switch, while selecting the appropriate size, the control of arcing has to be put into consideration.
A good switch should be the one whose contact is made in such a way as to limit the arc formation by having no contact-bounce and by having contacts made of good conductive, corrosion resistance and wear resistance materials.
A good change over switch must have adequate insulation and must be so constructed and located as not to constitute a potential hazard.
A good change over switch should also have tight contact points so as to limit or eliminate the possibility of partial contact at the contact point. The partial contact leads to over heating of the components and may lead to fire outbreak in the entire room.

1.1                                                 AIMS AND OBJECTIVES
Due to inconsistent supply of power, there is a growing need for an alternative source of power supply. This has lead to heavy capital investment in a bid to suppress power failure and ensure regular power supply for the industry, hospitals, schools and homes. The problem of power failure can be checkmated with the use of stand-by generating set.
An Engineering Author, “Tony Rudkin” said in his book titled “Upgraded Signal Source with Improved Performance and Reliability” that the cost and depredation associated with breakdown vary from one application to the other, and in some cases, the user has little choice but to ensure that a stand-by unit is available to take over on event of failure of primary system.
If some of these big firm do not make provisions for stand-by power source, frustration could set in which may lead to the closure of business and thus throwing workers into unemployment. Also in the case of hospital, undergoing a surgical operation and power supply suddenly go off, the patient might loose his or her life due to the power outage.
Furthermore, if the president of the country is making nationwide broadcast and all of a sudden power went off in the transmitting station, it would be viewed as an attempt to sabotage the government ruling and some people must pay for it.
In his book, Tony Rudkin also said that the depredation caused by such reduce efficiency of the organization and leads to a great deal of frustration.
Sequel to the rate at which more sophisticated electrical/electronics gadgets are being procured and installed in our homes, hospitals and business premises, there is a justifiable need for a faster and more reliable change over system in an event of power outage.
In view of these considerations, this project is aimed at designing and constructing a workable automatic change over switch with single phase healthy output but operated from three phase system.


1.2                                         SIGNIFICANCE OF THE PROJECT
The automatic change over switch, the switch aimed at achieving the following automatic actions;

  • To change power over to generator
  • To change back to PHC
  • To change the generator.
  • It select healthy phase of the mains supply

The automatic change over unit is a single phase changeover but operated from three phase system. The automatic change over switch has the following advantages;
It minimizes damages to lives/equipment since it has its own monitoring system and its switching requires no human contact with the switch, thus eliminating human error. 
It reduces its change over timing to the minimum due to its fast response to power outage.
It maintains high quality of service through its fast and prompt response.
Moreover, the size and captivity of the unit will depend upon the load for which it will be used. The unit is also portable, easy, convenient and safe to install.

1.4                                     STATEMENT OF THE PROBLEMS
In every home, office or industries, automatic power changeover  plays a vital role, that is, It provides a means of switching from utility AC mains to generator in the case of power failure; This project has been improved on the existing types of electromechanical device that has being in use over the years.     
In the course of designing this project, different kinds of problem was notice such as:

  • Difficulty in troubleshooting with circuit without the circuit diagram
  • Difficulty in connecting the output without short-circuiting, until a multiplexing circuit was gotten.
  • Difficult in wiring because of the strong wiring the project required.

1.5                              SCOPE AND LIMITATION OF THE STUDY
This work covers only a one phase automatic changeover which can only be used for providing a means of switching from one phase of AC mains to another in the case of failure in public utility.

1.7                                         APPLICATION OF THE PROJECT
Some common examples of entities that implement automatic switches out of necessity are: hospitals, data centers, jails and prisons, fire departments, defense organizations, and police departments.
1.8                                   DEFINITION OF TERMS
CHANGEOVER: Generally, a changeover switch is a system which could be operated manually or automatically , that changes one source of power supply to another source in case of power failure from either of the two sources.
RELAY: relay is one of the major components used in this work which is an electrical device, typically incorporating an electromagnet, which is activated by a current or signal in one circuit to open or close another circuit.
POWER FLUCTUATIONS: is a periodic dip or spikes in the electrical current of any given circuit.
POWER FAILURE: is a short- or long-term loss of the electric power to an area.  
     

1.9                          PROJECT WORK ORGANISATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this works is on the introduction to changeover switch. In this chapter, the background, significance, objective limitation and problem of changeover switch were discussed.
Chapter two is on literature review of changeover switch. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.

RELATED TOPICS/MATERIAL

1]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC TRANSFER SWITCH (ATS)

2]. DESIGN AND CONSTRUCTION OF A PHASE FAILURE DETECTOR AND ITS SIGNIFICANCE FOR THREE PHASE POWER SUPPLY

3]. DESIGN AND CONSTRUCTION OF A PHASE FAILURE CONTROLLER FOR THREE PHASE EQUIPMENT

4]. DESIGN AND CONSTRUCTION PHASE SEQUENCE INDICATOR

5]. DESIGN AND CONSTRUCTION OF A PHASE SEQUENCE CHECKER FOR THREE PHASE SUPPLY

6]. DESIGN AND CONSTRUCTION OF A MICROCONTROLLER BASED AUTOMATIC 3-PHASE SELECTOR

7]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC PHASE SELECTOR FOR 3-PHASE POWER SUPPLY

8]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC CHANGEOVER SWITCH WITH GENERATOR TRIP-OFF DEVICE

9]. DESIGN AND CONSTRUCTION OF A SINGLE PHASE  AUTOMATIC CHANGEOVER SWITCH WITH PHASE SELECTOR

10]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC CHANGEOVER FOR 3-PHASE POWER SUPPLY

11]. CONSTRUCTION OF AUTOMATIC CHANGE OVER WITH GENERATOR TRIP OFF (USING A REMOTE CONTROL)

12]. DESIGN AND CONSTRUCTION OF A 60A THREE PHASE AUTOMATIC CHANGEOVER SWITCH

13]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC CHANGE OVER SWITCH (3.7KVA)

14]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC CHANGEOVER SWITCH USING CONTACTOR

15]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC CHANGEOVER SWITCH WITH PHASE MONITORING DEVICE

16]. DESIGN AND IMPLIMENTATION OF A 200A AUTOMATIC CHANGEOVER SWITCH WITH PHASE SELECTOR AND POWER FAILURE ALARM

17]. DESIGN AND CONSTRUCTION OF AN AUTOMATIC CHANGEOVER SWITCH

18]. DESIGN AND CONSTRUCTION OF A SINGLE PHASE AUTOMATIC CHANGEOVER SWITCH

19]. DESIGN AND CONSTRUCTION OF A 3.5KVA AUTOMATIC INVERTER CHANGEOVER

 

CLICK HERE FOR MORE RELATED TOPICS/MATERIAL

This material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We make abstract and chapter one visible for everyone.

All Project Topics on this site have complete 5(five) Chapters . Each Project Material include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.

To "DOWNLOAD" the complete material on this particular topic above click "HERE"

To view other related topics click HERE

To "SUMMIT" new topic(s) OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE

Do you want us to research for your new topic? if yes, click "HERE"

For more information call us on:+2348146561114 (MTN) or +2347015391124 (AIRTEL)



IF YOU ARE SATISFIED WITH OUR SERVICES, PLEASE DO NOT FORGET TO INVITE YOUR FRIENDS AND COURSEMATES TO OUR PAGE.