USER'S INSTRUCTIONS: The project work you are about to view is on "effect of waste engine oil contamination on geotechnical properties of clay soil". Please, sit back and study the below research material carefully. This project topic "effect of waste engine oil contamination on geotechnical properties of clay soil" have complete 5(five) Chapters. The complete Project Material/writeup include: Abstract + Introduction + etc + Literature Review + methodology + etc + Conclusion + Recommendation + References/Bibliography.Our aim of providing this "effect of waste engine oil contamination on geotechnical properties of clay soil" project research material is to reduce the stress of moving from one school library to another all in the name of searching for "effect of waste engine oil contamination on geotechnical properties of clay soil" research materials. We are not encouraging any form of plagiarism. This service is legal because, all institutions permit their students to read previous projects, books, articles or papers while developing their own works.
TITLE PAGE
EFFECT OF WASTE ENGINE OIL CONTAMINATION ON GEOTECHNICAL PROPERTIES OF CLAY SOIL
BY
---
EE/H2013/01430
DEPARTMENT OF ----
SCHOOL OF ---
INSTITUTE OF ---
DECEMBER,2018
APPROVAL PAGE
This is to certify that the research work, "effect of waste engine oil contamination on geotechnical properties of clay soil" by ---, Reg. No. EE/H2007/01430 submitted in partial fulfillment of the requirement award of a Higher National Diploma on --- has been approved.
By
--- . ---
Supervisor Head of Department.
Signature………………. Signature……………….
……………………………….
---
External Invigilator
DEDICATION
This project is dedicated to Almighty God for his protection, kindness, strength over my life throughout the period and also to my --- for his financial support and moral care towards me.Also to my mentor --- for her academic advice she often gives to me. May Almighty God shield them from the peril of this world and bless their entire endeavour Amen.
ACKNOWLEDGEMENT
The successful completion of this project work could not have been a reality without the encouragement of my --- and other people. My immensely appreciation goes to my humble and able supervisor mr. --- for his kindness in supervising this project.
My warmest gratitude goes to my parents for their moral, spiritual and financial support throughout my study in this institution.
My appreciation goes to some of my lecturers among whom are Mr. ---, and Dr. ---. I also recognize the support of some of the staff of --- among whom are: The General Manager, Deputy General manager, the internal Auditor Mr. --- and the ---. Finally, my appreciation goes to my elder sister ---, my lovely friends mercy ---, ---, --- and many others who were quite helpful.
PROJECT DESCRIPTION: This work "effect of waste engine oil contamination on geotechnical properties of clay soil" research material is a complete and well researched project material strictly for academic purposes, which has been approved by different Lecturers from different higher institutions. We made Preliminary pages, Abstract and Chapter one of "effect of waste engine oil contamination on geotechnical properties of clay soil" visible for everyone, then the complete material on "effect of waste engine oil contamination on geotechnical properties of clay soil" is to be ordered for. Happy viewing!!!
The effects of waste engine oil (WEO) contamination on geotechnical properties of laterite soil was investigated. Laboratory testing of clay soil from Eagle Island area of Port Harcourt was carried out. Tests carried out included Specific gravity, Atterberg properties, Compaction, California Bearing Ratio (CBR), Linear shrinkage and tri-axial compression in both clean and contaminated clay soils. Varying percentages of (0%, 3%, 6%, 9% and 12%) of WEO were mixed with clay soil as a simulation of the contamination. Results show that the Specific gravity and Plastic Limits (PL) decreased as the content of used engine oil increased. The values of the Linear Shrinkage, Maximum Dry Density (MDD) and Optimum Moisture Content (OMC) increased as the content of the waste engine oil increased but experienced a decrease at 6% contamination. The values of Shear Strength and CBR decreased as the content of the contamination increased but experienced an increase at 9% WEO content, thereafter a decrease commenced again.
TABLE OF CONTENTS
COVER PAGE
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWELDGEMENT
ABSTRACT
CHAPTER ONE
- INTRODUCTION
- BACKGROUND OF THE PROJECT
- AIM OF THE STUDY
- SCOPE OF THE STUDY
- LIMITATION OF THE STUDY
- PROJECT ORGANISATION
CHAPTER TWO
LITERATURE REVIEW
- OVERVIEW OF LATERITE SOIL
- USES OF LATERITE SOILS
- REVIEW OF RELATED STUDIES
CHAPTER THREE
3.0 MATERIALS AND METHOD
- MATERIALS
- METHOD
CHAPTER FOUR
- RESULT AND DISCUSSIONS
CHAPTER FIVE
- CONCLUSION
- RECOMMENDATION
- REFERENCES
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
The indiscriminate location of auto maintenance workshops and operation of industrial and home generators has resulted in massive pollution of soils in such locations. The waste engine oil penetrate deep down affected soils by the effect of gravity. Several works have been carried out on WEO and crude oil contaminated soils.
Hashim, M.A. and Sabiu, A.F.(2013), investigated the effects of Crude Oil Low Point Pour Fuel Oil (LPFO) and Vacuum Gas Oil contamination on the geotechnical properties of sand, clay and lateritic soils. They established that shear strength of clay soil increased with LPFO contaminations at 2% and 4% LPFO, however, at 6% LPFO contamination and 2-6% LPFO contamination, the shear strength of clay increased.
The CBR values for the clay soil decreased with LPFO contamination. Other deleterious changes included an increase in consolidation settlement for LPFO contaminated laterite. The consolidation settlement of the contaminated clay soil generally decreased with all contaminants. Meegoda, N. J. and Ratanweera P. (1994), examined the compressibility of contaminated fine-grained soils by consolidation test.
Meegoda, N. J. and Ratanweera P. (1994), also carried out geotechnical investigation of oil contaminated Kuwaiti Sand as a result of the destruction of Kuwaiti’s oil production facilities at the end of the Gulf war. The results of their findings revealed a reduction in permeability and strength and an increase in compressibility with oil contamination.
Meegoda, N. J. and Ratanweera P. (1994), studied the effect of motor oil contamination duration on over consolidated clay and reported decreases in Atterberg properties, unconfined compression strength but increases in the permeability, compression and swell potential of the contaminated soil. Furthermore, they observed that motor oil contamination led to close packing of the clay particles.
Authors in [5] and [6] corroborated this view. They also concluded that the compression behaviour of montrmorillonite indicated that the particles tend to coagulate and to behave like granular materials in the presence of organic contaminants. [7], observed that Liquid Limit and consolidation parameters of highly plastic clay tend to decrease in the presence of organic pollutants.
The engineering properties of oil contaminated sand were investigated by [8]. They reported decreasing values of strength, permeability, MDD, OMC and Atterberg Limits values with increase in contaminant content.
Tests to determine the geotechnical properties of oil contaminated sands were carried out by [9] and [10]. Results indicated that the compaction characteristics are influenced by oil contamination. The suitability of petroleum contaminated soils in road construction was studied by [11]. They found out that in construction application including stabilizing the soil with cement, mixing it with crushed stone aggregate for use in road bases or sub bases, and using it for as a fine aggregate replacement in hot mix asphalt concrete, there was good potential for use in road construction..
[12], investigated the effect of waste engine oil contamination on the plasticity, strength and permeability of lateritic clay. They concluded that (i) contamination of the lateritic clay with increasing percentage of waste engine oil resulted in progressive increase in plasticity index of the soil, thus making the soil less workable,
- Optimum Moisture Content and Maximum Dry Density, unit weight of the contaminated soil decreased with increasing percentage of waste engine oil in the soil.
- Surprisingly, CBR (soaked and un-soaked) values of the contaminated soil were greater than those of the uncontaminated soil.
- The permeability of the soil decreased with increasing content of the waste engine oil.
- They recommended stabilizing the waste engine oil contaminated lateritic clay before using it for construction purposes.
Also, authors in [10] - [13] also studied the effect of waste engine oil contamination on different types of soil. [10] concluded that the Atterberg Limits of unconfined compressive strength of an over consolidated clay decreased while the coefficient of permeability increased with increasing motor oil content.[13] found out that the OMC, MDD and unconfined compressive strength and CBR of a lateritic soil decreased with the waste engine oil content of the soil.
- , investigated the effect of crude oil polluted soils and concluded that the Shear strength, permeability and OMC and MDD of the crude oil polluted soils decreased as the content of the crude oil increased. However, the CBR increased as the crude oil content increased. Therefore crude oil polluted soils can be used as base and sub base for roads and air-field construction.
- , investigated the geotechnical properties of waste engine oil contaminated laterites. The result showed a general decrease in OMC, Liquid limits and Permeability. They observed an increase in shear strength, MDD and CBR.
This study investigated the effects of waste engine oil on geotechnical properties of clay soils.
1.2 AIM OF THE STUDY
This paper entails experimental investigation of the effects of waste engine oil contamination of a lateritic clay soil on its plasticity, compaction characteristics, strength and permeability.
1.3 SCOPE OF THE STUDY
AN estimated 200,000 m3 of waste engine oil is annually generated in Nigeria. It is sometimes reused for suppressing dust, wood preservation, automobile spare-parts’ rust prevention, lubricating formwork and mould; as fuel for industrial boilers, fuel for bakery furnace, weed killer, hydraulic oil and as gear oil – when mixed with grease [1]. Despite these areas of application, more waste engine oil is still indiscriminately disposed on land. This is of major environmental concern because such disposal has the potential to pollute groundwater, surface water, reduce soil nutrients available to plants and alter the structural behaviour of the soil on which they are disposed.
1.4 LIMITATION OF THE STUDY
The experiment was carried out by Varying percentages of (0%, 3%, 6%, 9% and 12%) of WEO were mixed with clay soil as a simulation of the contamination, which was used to determine the specific gravity, plastic limit, optimum moisture content, maximum dry unit weight, and permeability of the soil
1.5 PROJECT ORGANISATION
The work is organized as follows: chapter one discuses the introductory part of the work, chapter two presents the literature review of the study, chapter three describes the methods applied, chapter four discusses the results of the work, chapter five summarizes the research outcomes and the recommendations.
CHAPTER TWO: The chapter one of this work has been displayed above. The complete chapter two of "effect of waste engine oil contamination on geotechnical properties of clay soil" is also available. Order full work to download. Chapter two of "effect of waste engine oil contamination on geotechnical properties of clay soil" consists of the literature review. In this chapter all the related work on "effect of waste engine oil contamination on geotechnical properties of clay soil" was reviewed.
CHAPTER THREE: The complete chapter three of "effect of waste engine oil contamination on geotechnical properties of clay soil" is available. Order full work to download. Chapter three of "effect of waste engine oil contamination on geotechnical properties of clay soil" consists of the methodology. In this chapter all the method used in carrying out this work was discussed.
CHAPTER FOUR: The complete chapter four of "effect of waste engine oil contamination on geotechnical properties of clay soil" is available. Order full work to download. Chapter four of "effect of waste engine oil contamination on geotechnical properties of clay soil" consists of all the test conducted during the work and the result gotten after the whole work
CHAPTER FIVE: The complete chapter five of design and construction of a "effect of waste engine oil contamination on geotechnical properties of clay soil" is available. Order full work to download. Chapter five of "effect of waste engine oil contamination on geotechnical properties of clay soil" consist of conclusion, recommendation and references.
To "DOWNLOAD" the complete material on this particular topic above click "HERE"
Do you want our Bank Accounts? please click HERE
To view other related topics click HERE
To "SUMMIT" new topic(s), develop a new topic OR you did not see your topic on our site but want to confirm the availiability of your topic click HERE
Do you want us to research your new topic? if yes, click "HERE"
Do you have any question concerning our post/services? click HERE for answers to your questions
For more information contact us through any of the following means:
Mobile No :+2348146561114 or +2347015391124 [Mr. Innocent]
Email address :engr4project@gmail.com
COUNTRIES THAT FOUND OUR SERVICES USEFUL
Australia, Botswana, Canada, Europe, Ghana, Ireland, India, Kenya, Liberia, Malaysia, Namibia, New Zealand, Nigeria, Pakistan, Philippines, Singapore, Sierra Leone, South Africa, Uganda, United States, United Kindom, Zambia, Zimbabwe, etc
Support: +234 8146561114 or +2347015391124
Watsapp No :+2348146561114
Email Address :engr4project@gmail.com
FOLLOW / VISIT US VIA: